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ABSTRACT

Wireless Sensor Networks (WSN) are playing a key role in the efficient operation of Cyber

Physical Systems (CPS). They provide cost efficient solutions to current and future CPS re-

quirements such as real-time structural awareness, faster event localization, cost reduction due

to condition based maintenance rather than periodic maintenance, increased opportunities for

real-time preventive or corrective control action and fine grained diagnostic analysis. However,

there are several critical challenges in the real world applicability of WSN. The low power,

low data rate characteristics of WSNs coupled with constraints such as application specified

latency and wireless interference present challenges to their efficient integration in CPSs. The

existing state of the art solutions lack methods to address these challenges that impediment

the easy integration of WSN in CPS.

This dissertation develops efficient resource management algorithms enabling WSNs to

perform reliable, real-time, cost efficient monitoring. This research addresses three important

problems in resource management in the presence of different constraints such as latency,

precedence and wireless interference constraints. Additionally, the dissertation proposes a

solution to deploy WSNs based real-time monitoring of critical infrastructure such as electrical

overhead transmission lines.

Firstly, design and analysis of an energy-aware scheduling algorithm encompassing both

computation and communication subsystems in the presence of deadline, precedence and in-

terference constraints is presented. The energy-delay tradeoff presented by the energy saving

technologies such as Dynamic Voltage Scaling (DVS) and Dynamic modulation Scaling (DMS)

is studied and methods to leverage it by way of efficient schedule construction is proposed.

Performance results show that the proposed polynomial-time heuristic scheduling algorithm
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offers comparable energy savings to that of the analytically derived optimal solution.

Secondly, design, analysis and evaluation of adaptive online algorithms leveraging run-

time variations is presented. Specifically, two widely used medium access control schemes

are considered and online algorithms are proposed for each. For one, temporal correlation in

sensor measurements is exploited and three heuristics with varying complexities are proposed

to perform energy minimization using DMS. For another, an adaptive algorithm is proposed

addressing channel and load conditions at a node by influencing the selection of either low

energy or low delay transmission option. In both cases, the simulation results show that the

proposed schemes provide much better energy savings as compared to the existing algorithms.

The third component presents design and evaluation of a WSN based framework to mon-

itor a CPS namely, electrical overhead transmission line infrastructure. The cost optimized

hybrid hierarchical network architecture is composed of a combination of wired, wireless and

cellular technologies. The proposed formulation is generic and addresses constraints such as

bandwidth and latency; and real world scenarios such as asymmetric sensor data generation,

unreliable wireless link behavior, non-uniform cellular coverage and is suitable for cost mini-

mized incremental future deployment.

In conclusion, this dissertation addresses several challenging research questions in the area

of resource management in WSNs and their applicability in future CPSs through associated

algorithms and analyses. The proposed research opens up new avenues for future research such

as energy management through network coding and fault diagnosis for reliable monitoring.
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CHAPTER 1 Introduction

Cyber-physical systems have highly distributed and computationally intensive processing

requirements along with a demand for timely and reliable wireless networking for effective

monitoring and control. Wireless Sensor Networks (WSNs) are capable of meeting these re-

quirements in a cost-efficient manner and hence have found applications in diverse areas like

condition monitoring of critical infrastructure [4], [5], road/traffic monitoring [6] for surveil-

lance, industrial automation, weather monitoring and intrusion detection to name a few.

1.1 Cyber-physical systems

Cyber-Physical Systems (CPSs) are complex integration of interdependent computational

and physical processes. Identifying, understanding, and analyzing such interdependencies pose

significant challenges which are greatly magnified by the geographical expanse and complexity

of individual infrastructures and the nature of coupling among them [7]. CPSs represent a

bold new generation of systems that integrate computing and communication capabilities with

the dynamics of physical and engineered systems. A gamut of emerging applications fall in

the CPSs category which take computation, communication, monitoring and control to new

levels of complexity. These applications connect the physical systems embedded with low power

wireless nodes (integrated with multimodal sensors) to the cyber systems which are responsible

for communication and control. Emerging applications include Smart Grid [8], [9], condition

monitoring of critical infrastructure like power delivery systems [4], automated traffic control,

ubiquitous healthcare monitoring etc.
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1.2 Role of Wireless Sensor Networks in CPSs

These new application scenarios envision smart monitoring and control through the deploy-

ment of hundreds of networked wireless sensors in real time environments. These systems with

integrated sensing, computation and communication capabilities are the core of CPSs. WSNs

are capable of real time monitoring over vast geographical areas. Wireless sensor based mon-

itoring provides several advantages like real-time structural awareness, cost reduction due to

condition based maintenance rather than periodic maintenance, increased operator awareness,

increased safety and reliability and improved capability for forensic and diagnostic analysis

etc. The data communication infrastructure involves processing a vast number of data trans-

actions for analysis and automation. Managing the communication burden and resulting data

latency is essential for efficient analysis and fast control responses and calls for distribution of

intelligence throughout the infrastructure [10]. Critical infrastructures such as the electrical

transmission grid are complex physical and cyber-based systems that form the lifeline of mod-

ern society, and their reliable and secure operation is of paramount importance to national

security and economic vitality.

1.3 Resource management in WSN

WSNs are resource constrained with respect to energy, bandwidth, memory and processing

power. While the collective power is what makes WSNs useful in real world applications, the

individual stringent capabilities of each sensor pose significant challenges. In this context,

the problem of energy-aware resource management in networked real-time WSNs and their

integration in CPS applications is addressed.

This research refers mainly to a sensor network model consisting of one sink node or base

station and a large number of sensor nodes deployed over a large geographic area. Data

is transferred from sensor nodes to the sink through a multi-hop communication paradigm.

Resource management algorithms for WSNs and their integration with future applications will

need to take three types of factors into account: first, the resource limitations of a single

sensor node with respect to battery, bandwidth and processing power; second, factors affecting
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schedulability when a network of sensors is considered such as interference due to shared

wireless channel and precedence constraints; and third, application dependent factors such as

the latency requirements, topology specifications and any runtime opportunities presented by

the physical system being monitored etc.

With respect to the first and second factors, resource management needs to happen at

the individual node level and at the network level. Energy is a very critical resource and

therefore, energy conservation is a key issue in the design of systems based on wireless sensor

networks. Low battery power can not only reduce network lifetime but it gives rise to random

and uncertain sensor measurements which unless identified jeopardize the very purpose of

monitoring. A taxonomy of approaches for energy management in static WSNs is shown in

Fig. 1.1.
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Figure 1.1: Taxonomy of existing energy management algorithms

Given that computation and communication subsystems account for the major energy con-

sumption, both the subsystems need to be looked at for any energy minimization solution.

But the solution approach of all the studies mentioned above do not take into account the

computation task scheduling performed by each node along with the scheduling of commu-

nication messages. Prior work on scheduling of computation and communication subsystems
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either focuses on different objective functions [11] or does not take into account computation

task scheduling [12] or does not take into account the wireless interference [13].

Additionally, scheduling protocols in WSNs can leverage runtime opportunities offered by

the underlying system being monitored. Specifically, such conditions may arise due to corre-

lation in the attributes of the underlying physical system being monitored, wireless channel

conditions, workload variations etc. Such runtime variations can be adaptively exploited at

runtime to attain further energy minimization. Given dense deployments of WSN and shared

wireless channel, typically two types of channel access schemes are used: Time Division Mul-

tiple Access (TDMA) and Carrier Sense Multiple Access/ Collision Avoidance (CSMA/CA).

The existing work in this direction focuses on centralized approaches such as adaptive sam-

pling [14, 15] for TDMA systems and contention window adaptation methods like [16], [17]

for CSMA/CA systems; or channel aware variable rate methods such as [18]. WSNs are used

widely for monitoring applications where the main purpose is continuous data collection of

some physical parameters such as temperature, tilt, environmental pressure etc. Since sen-

sor data streams are measurements of continuous physical phenomenon, spatial and temporal

correlations within data streams are inherent and can be effectively leveraged.

Future applications require a high-performance data communication network that supports

operational requirements like real-time monitoring and control. One such application is trans-

mission line infrastructure. WSNs have been proposed to improve the state of the art in

transmission line monitoring for real-time monitoring and control [3, 4, 19–22]. While WSNs

are a promising solution, they are limited by low data rate constraints which cannot keep

up with the low latency, high data rate requirements. Current research either addresses this

challenge either at a very high level of abstraction [4, 19] or makes unrealistic assumptions

about the underlying system [3].

1.4 Research Questions Addressed in the Thesis

Given the existing research in this area of focus, several research gaps can be identified. This

thesis contributes by providing solutions to those unaddressed problems. Fig. 1.2 summarizes
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the thesis contributions.

Firstly, at the system level and at the network level, the need for a comprehensive scheduling

scheme with the objective of energy minimization is identified. A comprehensive scheduling

scheme should address joint scheduling of computation and communication subsystems and

should also address the wireless interference constraints. The joint scheduling problem poses

challenges, for example, the different sized time slots required by task execution and message

transmission prevents the use of graph coloring approaches where each color denotes a fixed

sized time slot. This research observes that the assumption of monotonically decreasing energy

consumption of messages employing dynamic modulation scaling is incorrect and proposes tak-

ing the nature of the energy-delay curve into consideration before allocating slack to messages.

The second chapter addresses these challenges and explains the design and evaluation of an

offline algorithm that achieves joint scheduling of tasks and messages in data collection tree

based WSNs to minimize energy consumption.

Secondly, it is observed that runtime variations either presented by runtime channel con-

ditions or due to conditions of the underlying physical system being monitored, may result

in unused resources thus presenting an opportunity for further optimization. Such runtime

variations can be exploited using online adaptive algorithms as described in the third chapter.

The design and evaluation of online algorithms that cater to two widely used Medium Access

Control schemes namely, TDMA and CSMA/CA is presented.

The final component of this research addresses issues related to the applicability of WSNs in

CPS application. Any future application aiming to utilize WSN presents its own set of unique

specifications and challenges. Monitoring transmission lines using WSNs is a significantly

different problem than monitoring other structures using WSNs owing to the specifications such

as specific chain topology traversing a large geographical area. In order to address this, a hybrid

hierarchical network design and evaluation is presented in the fourth chapter. The existing

research in this area [3] relies heavily on symmetry. The underlying network infrastructure

and the cellular infrastructure is assumed to be symmetric and available at all times. Further,

it is assumed that all transmission towers are identical and transmit the same amount of data.
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This creates a motivation to devise a network design solution that addresses each one of the

asymmetries and forms the third component of the proposed research addressing these real

world challenges.
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Figure 1.2: Thesis Contributions: Resource Management Algorithms

Fig. 1.2 summarizes the research contributions made through this thesis. The unifying

theme of this thesis is presenting designs and algorithms that help in efficient operation of

WSN thus enabling their seamless integration with the future CPS applications despite the

challenges of limited resources faced by WSN. Specifically, the first two research components

focus on energy management in WSN through scheduling approaches. The first part is offline

energy-aware schedule construction targeted at tree based data collection applications which

commonly employ TDMA as the channel contention scheme. The second research component

focuses on further minimizing energy consumption at runtime by exploiting runtime variations.

We propose adaptive runtime algorithms for two widely used channel contention schemes. Our

schemes propose energy efficient operation of WSN which results in longer lifetimes of the

sensor nodes. In the third component, we focus on a transmission line infrastructure monitoring

application and address issues related to the real world applicability of WSN in such real-time

applications. The algorithms proposed in part one and two can be applied for the energy

management of sensors used to monitor transmission lines in part three. Energy management

might not be a critical design challenge for the problem proposed in part three, where sensors
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can alternatively harvest energy from ambient sources. However, other resource constraints

faced by WSN such as limited wireless bandwidth, application latency and monetary cost

present more dominant challenges in that research component.

1.5 Thesis Statement

The combination of limited resources and power, network topologies, time-varying wireless

channel, temporal requirements, dynamic workloads and high reliability requirements presents

unique challenges towards efficient operation of WSN. The goal of the proposed research is to

devise efficient resource management algorithms for energy-constrained and highly dynamic

wireless sensor networks in order to support easy integration with future applications. This

research addresses challenges like attaining energy efficiency in the presence of wireless inter-

ference, precedence and real-time constraints. Resource management is proposed in resource

constrained WSNs by way of joint computation-communication scheduling mechanisms, adap-

tive load and channel aware transmission scheduling schemes and slack management schemes

exploiting temporal redundancy. For reliable real-time monitoring of geographically dispersed

electrical overhead transmission lines, a hybrid wireless network for real-time delivery of sensor

data is designed.

1.6 Thesis Organization

The rest of the dissertation is organized as follows.

• In Chapter 2, an algorithm for joint scheduling of computation tasks and communication

messages in data collection tree based networks with the objective of energy minimiza-

tion is presented. A Mixed Integer Linear Program (MILP) to find an optimal solution is

formulated. Then, a three phase heuristic is proposed which first performs joint schedul-

ing of tasks and messages and then reduces the energy consumption of the network by

using the energy saving techniques namely Dynamic Voltage Scaling (DVS) for tasks

and Dynamic Modulation Scaling (DMS) for messages. Simulation results are presented

towards the end of the chapter.
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• Chapter 3 proposes online scheduling in TDMA and CSMA/CA systems. For TDMA sys-

tems, a lightweight node level slack identification method exploiting temporal correlation

amongst sensor measurements is proposed. Further, heuristics with varying complexities

are proposed and evaluated with the objective of energy minimization while utilizing

DMS. For CSMA/CA systems, a load aware and channel aware heuristic that attains

joint reduction in energy and delay at the node level is proposed and evaluated.

• Chapter 4 presents hybrid network design for real-time monitoring of electrical over-

head transmission lines using WSN. A formulation for designing a high performance

data communication network with the objective of minimizing the installation and op-

erational costs while satisfying the end-to-end latency and bandwidth constraints of the

data flows is presented. A placement problem is formulated to find the optimal loca-

tion of cellular enabled transmission towers and evaluation results of the optimization

solution are presented for diverse scenarios. The proposed formulation is generic and ad-

dresses real world scenarios with asymmetric sensor data generation, unreliable wireless

link behavior and non-uniform cellular coverage etc.

• Chapter 5 presents conclusions and identifies several interesting research problems in the

area of resource management in WSNs.
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CHAPTER 2 Joint Scheduling of Tasks and Messages for

Energy Minimization in Interference-aware Real-time Sensor

Networks

2.1 Summary

Emerging applications of wireless sensor networks requiring extensive in-network infor-

mation processing and communication call for algorithms for joint scheduling of tasks and

messages in an energy efficient manner. Dense deployments of wireless nodes and shared

wireless channel pose severe interference constraints. Variation in the task and message work-

load prevents the traditional fixed slot size scheduling algorithms to be applied here. Several

scheduling schemes in literature propose interference-aware message scheduling with the ob-

jective of energy minimization, but the problem of joint scheduling of tasks and messages for

energy minimization in interference-aware manner has not been studied. In this chapter, a

Mixed Integer Linear Program (MILP) is formulated for the joint scheduling of computation

tasks and communication messages in data collection tree based networks. Then, a three

phase heuristic is proposed which first performs joint scheduling of tasks and messages and

then reduces the energy consumption of the network by using the energy saving techniques

namely Dynamic Voltage Scaling (DVS) for tasks and Dynamic Modulation Scaling (DMS) for

messages.

2.2 Background

The massive scale at which the sensor networks could be deployed demand smart usage

of the available energy to reduce the cost of monitoring. The future applications have highly
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distributed and computationally intensive processing requirements along with a demand for

timely and reliable wireless networking for effective monitoring and control. These applica-

tions leverage onboard computational capability on the wireless sensors to allow data processing

to occur within the network. The individual computed results are then wirelessly transmit-

ted. Coexistence of extensive computation and communication demand integrated scheduling

schemes.

Computation and communication subsystems dissipate bulk of energy in a sensor node.

Recent research [23] and [24] study the problem of system-wide energy management by distri-

bution of unused time slots (slack) amongst the computation and communication subsystems

using energy saving techniques like Dynamic Voltage Scaling (DVS) and Dynamic Modulation

Scaling (DMS). The DVS technique saves computation energy by simultaneously reducing CPU

supply voltage and frequency. The DMS technique saves communication energy by reducing

the radio modulation level [25]. In [23] and [24], DVS and DMS are considered to be analogous

which is not always correct. In DVS, energy is always a monotonically decreasing function of

delay but this is not true in the case of DMS.

The energy consumed by the radio of a wireless device is made up of two components: the

transmission energy and the circuit consumption energy. The transmission energy is a function

of several variables like the transmitter-receiver distance, transmission time, channel gain and

atmospheric noise. The circuit consumption energy on the other hand is a linear function

of the time the transmitter and receiver circuit need to be on. For the transmission energy

calculation, consider M-ary Quadrature Amplitude Modulation (MQAM) as the modulation

scheme. In MQAM, there areM constellation symbols, with b bits per symbol such thatM is

equal to 2b. Changing the modulation levels implies varying the number of bits in each symbol.

Decreasing(increasing) the modulation level implies reducing(increasing) the number of bits in

each symbol. This requires transmitting more symbols. Given a constant symbol rate, more

symbols means more transmission time.

As noted in [26], in traditional wireless networks, the transmission distance is large(≥

100m), hence the transmission energy is dominant in the total energy consumption. There-
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fore, in such wireless networks the main objective is to minimize the transmission energy.

However, in sensor networks the nodes are densely distributed, and the average distance be-

tween nodes is usually below 10m. As the modulation level decreases and the transmission

time increases, the transmitter and receiver circuit need to be on for a longer duration. In

such scenario, the circuit energy consumption along the signal path becomes comparable to

or even dominates the transmission energy in the total energy consumption. Hence, at lower

transmitter-receiver distance, continuously reducing the radio modulation level may lead to

increased energy consumption. The study in [26] considers lower bandwidth (= 10KHz) case.

We conducted simulations for higher bandwidth cases to get a more realistic scenario for

presently used WSNs which use the IEEE 802.15.4 standard and have bandwidth of 3MHz.

Our observations are shown in Fig. 2.1 and Fig. 2.2.

In Fig. 2.1 and Fig. 2.2, the vertical axis is the energy consumption per information bit

(log10
Ea

0.001 dBmJ) and the horizontal axis is the normalized transmission time, ( Ton
Tmax

). The

transmission time Ton is the time the transmitter-receiver circuit needs to be on. It is a

function of modulation level, b. This transmission time is normalized with respect to the

maximum transmission time, Tmax (corresponding to the lowest modulation level, b (=2)).

Thus the horizontal axis represents the time the transmitter-receiver circuit need to be on at

different modulation levels. This time increases as modulation level is decreased from 10 to

2. The points on the graph correspond to energy consumption per bit for modulation level, b

which can take values from the set {10, 8, 6, 4, 2}.

Fig. 2.1 shows energy-delay curve for distances ranging from 100m to 5m. Fig. 2.2 shows

energy-delay curve at smaller distances ranging from 20m to 2m. It can be seen that at higher

transmitter receiver distances (100m - 50m), the total energy consumption is a monotonically

decreasing function of normalized transmission time. But the same is not true for lower dis-

tances (lesser than 25m). The results show that at transmitter-receiver distance, d ≤ 20m,

modulation scaling initially yields energy savings but leads to higher energy consumption as

the modulation level is decreased further. At d ≤ 5, operating at the highest modulation level

is the most energy efficient. We use these observations and perform slack distribution only
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Figure 2.1: Effect of large transmitter-receiver distance

when there is a reduction in the total energy consumption.
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Figure 2.2: Effect of small transmitter-receiver distance

In order to provide timeliness guarantees, Time Division Multiple Access(TDMA) schedul-

ing is best suited for data collection tree-based topologies. TDMA scheduling assigns time

slots to nodes such that the data generated at each node reaches the root of the tree by the

end of the frame. Two nodes can transmit in the same time slot using the same channel if their

transmissions do not interfere with each other. Spatial reuse is advantageous as the schedule

length can be minimized and the resulting slack can be used by DVS and DMS to reduce the
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energy consumption of the network. In this chapter, we study this problem of joint scheduling

and slack distribution with the objective of energy minimization.

The chapter is organized as follows: in section 2.3 we cite related research, section 2.4

presents the system model. Section 2.5 presents the MILP formulation for obtaining the opti-

mal solution. Section 2.6 explains our proposed algorithm. Performance results are presented

in Section 2.7 and section 2.8 concludes the chapter.

2.3 Related Work

Existing literature in the realm of TDMA based interference-aware link scheduling can

be classified with respect to their objective functions. In some works like [27] and [28], the

objective is to increase throughput and minimize delay without any consideration for the

energy consumption, while studies in [29], [30] aim at minimizing the energy consumption by

minimizing the energy wasted during sleep-wakeup transitions. With stronger processors, more

memory on board and availability of higher bandwidth, sensor nodes are more equipped and

are widely deployed to perform extensive computation tasks. Thus task scheduling should be

given explicit consideration. But the solution approach of all the studies mentioned above do

not take into account the computation task scheduling performed by each node.

Prior work on joint scheduling of computation and communication subsystems is presented

in [11], [31], [13] and [12]. In [11], the objective is maximizing the number of clients that can

be scheduled with limited processor capacity and link capacity. In [31] the interference issues

are not taken into account. In [13], an energy aware computation-communication scheduling is

studied where DVS is used for computation energy reduction. However, they consider a very

simplistic model of one-hop network, ruling out parallel transmission and interference.

In [12], authors provide a real-time task mapping and scheduling solution in multi-hop

homogeneous WSNs. However, they only leverage the energy-delay tradeoff for computation

tasks using DVS, as opposed to our scheme which uses a combination of DVS and DMS. Their

approach to reduce energy consumption by slack reclamation using DVS equally scales down

the CPU speed of all the sensors. This approach will yield poorer results when applied to a
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system where both DVS and DMS is available. This is because any two processors will yield

the same energy savings when scaled down equally that is from a frequency level f1 to f2. But

two messages might differ in their energy savings when scaled down from same modulation

levels m1 to m2 owing to different distances that these messages need to be transmitted over.

So a combination of DVS and DMS needs an iterative scheme to yield better energy savings.

System-wide energy reduction using the combination of DVS and DMS is also studied

in [23], [24] and [32]. But in all these works, the interference issues are not considered. Also

the assumption of monotonically decreasing energy consumption of messages employing DMS

is not correct. In [32], authors investigate the problem of task allocation to a single-hop cluster

of homogeneous sensor nodes with multiple wireless channels with the objective to minimize

the balanced energy consumption of the network. The multiple wireless channel model can

serve to solve the interference issues only in small sized networks (≈10 nodes) as considered

in [32]. In large scale WSNs, interference issues need explicit consideration. On a different

note, environmental resource harvesting schemes [33] can reduce the problem of limited energy

budget but they have low unstable efficiency due to uncontrollable environmental conditions

rendering them unsuitable for real-time applications.

To the best of our knowledge, this is the first work that addresses the joint scheduling

of communication and computation to minimize energy consumption in an interference-aware

network. The joint scheduling problem poses several challenges. The time taken by the different

task execution and message transmission are different, preventing the use of graph coloring

approaches where each color denotes a fixed size slot. Time intensive computation tasks must

be executed at the node itself. They cannot be offloaded to a distant server owing to the large

energy consumption of the wireless transmitted messages. Additionally, the precedence and

interference conflicts present among the scheduled entities prevent the optimal allocation of

resources in order to reduce energy consumption.

The main contributions of this chapter are:

1. We formulate the Interference-aware Energy-aware Joint Scheduling (IEJS) problem. Con-

structing an energy-aware schedule which minimizes energy consumption, considering the con-
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vex nature of the energy-time tradeoff curve and the various conflicts present is an NP-hard

problem. It can be shown that the Multiple Choice Knapsack Problem (MCKP) can be poly-

nomially reduced to the energy-aware scheduling problem.

2. We take the nature of the energy-delay curve into consideration before allocating slack to

messages. As we show in Fig. 2.1 and Fig. 2.2, incremental slack allocation is not always energy

efficient for messages. Further, when tasks and messages are jointly considered, there are two

types of entities (tasks and messages) contending for the available slack. These two entities

differ in the way they interfere with objects of their same type. Two message transmission (not

bounded by precedence constraints) can interfere with each other due to spatial proximity of

the involved transmitters and receivers. But that is not the case with tasks. Any two tasks

can be simultaneously scheduled as long as there is no precedence relation between the two.

3. We present a mixed integer linear programming (MILP) formulation of our problem. The

optimal solution of the problem can be obtained by using a commercial software package such

as [34], though it is computationally very expensive. We develop a polynomial time algorithm

for joint scheduling of tasks and messages in a variable TDMA setting. Our method takes into

consideration the interference and precedence constraints and the varying nature of tasks and

messages.

Problem Statement: The problem of interference-aware energy-aware joint scheduling

of tasks and messages (IEJS) that we study in this chapter can be stated as:

IEJS: Given a set of tasks and messages allocated to nodes in a data aggregation tree, obtain

a feasible schedule for the tasks and messages that minimizes the energy consumption of the

network while preserving the precedence, deadline and interference constraints.

The IEJS problem can be shown to be NP-hard by polynomial reduction of the Multiple

Choice Knapsack Problem (MCKP) to the energy-aware scheduling problem.

2.3.1 Problem Complexity

We prove the complexity of the problem by reducing the Multiple Choice Knapsack problem

(MCKP) to an instance of the Interference-aware Energy-aware Message Scheduling (IEMS)
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problem. The MCKP problem is stated as: Given k classes N1,...Nk of items to pack in a

knapsack of weight capacity C, where each item Oij ∈ Ni has a value vij and weight wij , the

problem is to choose exactly one item from each class such that the value sum is maximized

without having the weight sum to exceed C. Fig. 2.3 shows an illustration of the MCKP and

its reduction to the energy-aware scheduling problem. Fig. 2.3 shows three classes of items

with each item having a fixed weight and value. The MCKP problem is to choose exactly one

item from each class such that the value sum is maximized without the weight sum to exceed

the weight capacity, C. The MCKP can be mathematically expressed as follows:

Maximize:
k∑
i=1

∑
j∈Ni

vijxij (2.1)

Subject to:
k∑
i=1

∑
j∈Ni

wijxij ≤ C (2.2)

∑
j∈Ni

xij = 1 ∀1 ≤ i ≤ k (2.3)

xij ∈ {0, 1} ∀1 ≤ i ≤ k and j ∈ Ni (2.4)
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Figure 2.3: Reduction of MCKP to IEMS
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Theorem 1: The problem of scheduling a set of messages with the goal of minimizing the

total energy consumption while satisfying the interference, precedence and deadline constraints

is NP-hard.

Proof. For the convenience of reduction, we rewrite the maximization objective of the MCKP

as the following minimization objective:

Minimize:
k∑
i=1

∑
j∈Ni

−vijxij

Now, the MCKP has a one to one correspondence with the IEMS problem and can be reduced

to an instance where maximum interference is considered. In the case of maximum interfer-

ence, a message transmission interferes with every other message reception in the network.

Hence, message scheduling has to be completely sequential barring any parallelism in message

transmission. Note that this instance of sequential message transmission is considered for the

sake of reduction to the MCKP and this simplest case of sequential message transmission is

also found to be hard. Thus, in cases where there is less interference and there is an opportu-

nity for spatial reuse, the scheduling is going to be even harder. For the purpose of reduction,

create a message Mi for each of the classes Ni. Each message can be transmitted at one of the

modulation levels MOij . For each object Oij in Ni create a modulation level MOij for Mi.

Now the weight of the object, wij , can be mapped to the time, Tij taken by the message’s mod-

ulation level and the value of the object, vij , can be mapped to the energy consumption, Eij , of

the message’s modulation level. The weight constraint of the knapsack can be mapped to the

deadline constraint in the scheduling problem as all the messages are sequentially transmitted.

If M is the total number of messages and λm is the number of modulation levels available to

each message, then this reduction takes O(Mλm) amount of time which is a polynomial of the

problem size. The IEMS problem can be formally stated as:

Minimize:
k∑
i=1

∑
j∈Mi

Eijyij (2.5)

Subject to:
k∑
i=1

∑
j∈Mi

Tijyij ≤ D, (2.6)
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∑
j∈Mi

yij = 1, ∀1 ≤ i ≤ k (2.7)

yij ∈ {0, 1} ∀1 ≤ i ≤ k and j ∈Mi (2.8)

Refer to Fig. 2.3 for an illustration of the reduction mechanism. Each class can be mapped

to a message and items in each class can be mapped to the message at different modulation lev-

els having different energy consumption and delay. In order to schedule these messages, exactly

one modulation level of each message must be picked. This implies that if the interference-

aware energy-aware message scheduling problem can be solved in polynomial time, then the

MCKP can also be solved in polynomial time. However, it is known that the MCKP problem

is NP-hard. Therefore, the scheduling problem is also NP-hard.

Now in the existing IEMS problem, if we add another constraint which is energy-aware

task scheduling, then the problem becomes IEJS and it remains NP-hard. Thus, the joint

scheduling of tasks and messages with interference, precedence and deadline constraints is

NP-hard.

2.4 System Model

In data monitoring applications, each node in the network is required to perform some

periodic tasks like sensing, computation and communication. A leaf node processes the data

sampled by its sensor suite. All the children nodes transmit their data to the parent node. Once

the parent node receives data from all its children, it performs data aggregation and transmits

this aggregated message to its parent node. Thus given a fixed tree topology where the nodes

are static, the problem of task mapping has been taken care of and the problem of scheduling

remains. At a node vi, the computation task is denoted by ti and the communication message

is denoted by mi. In the rest of the chapter we use the term entity to refer to ti and mi

unless explicitly stated. Nodes vj = {1,2...,k} communicating to the same parent node, H are

henceforth said to be in a cluster with the parent node referred to as cluster head. Any two
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nodes in a cluster cannot transmit simultaneously since the receiver (cluster head) can only

correctly receive signal from one transmitter at a time.

2.4.1 Interference Model

In wireless networks, the message transmitted by a node may be received by all the nodes

within its transmission range. Usually two types of ranges are associated with each transmitter:

a transmission range (r) and an interference range (R), with R ≥ r. In order to receive a

message and successfully decode it, one of the necessary condition is that the receiver must

be in the transmission range of the transmitter. When a node vi is outside the transmission

range but inside the interference range of a transmitter vj , node vi cannot receive the signal

from vj successfully, but the signal can corrupt any other transmission intended for vi which vi

could have otherwise successfully decoded. There are several models proposed for interference

modeling. We use the protocol model proposed in [35] for interference modeling in wireless

networks. In the protocol model, interference range is a function of the transmitter-receiver

distance. According to the protocol model [35], if a node vi transmits to a node vj , then this

transmission is successfully received by node vj if

| vj − vk |≥ (1 + δ) | vj − vi | (2.9)

for any node vk simultaneously transmitting to any node vm at the same time using the same

channel. The interference range is a function of the parameter δ and the transmitter receiver

distance. It is defined with respect to a link. In data aggregation tree, a node can have more

than one child node and hence has different interference ranges with respect to each of the child

node as shown in Fig. 2.4. To correctly model the different interference ranges, we model each

link as a node in the mixed graph as explained later. And an edge exists between two nodes

in the mixed graph if the two links in the original graph cannot be scheduled simultaneously.

Protocol model implicitly assumes that each node vi will adopt the power control mechanism

while transmitting.
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Figure 2.4: Different interference ranges at parent node

2.4.2 Computation-Communication Model

Each node supports DVS with λt discrete frequency levels and DMS with λm discrete

modulation levels. We consider a DVS-enabled computation subsystem where F denotes the

set of available discrete frequencies and P denotes the set of associated power levels at each

of these frequencies. The ith element of these sets is denoted as Fi and Pi. Each sensor node

performs a task of C computation cycles. The time taken by a task of C computation cycles

is calculated as C
Fi

. The associated energy at the ith performance level can then be calculated

as Pi· CFi .

For the communication subsystem, we consider M-ary Quadrature Amplitude Modulation

(MQAM) as the modulation scheme. An Additive White Gaussian Noise (AWGN) channel

model is used to model the wireless channel. In MQAM, there are M constellation symbols,

with b bits per symbol such that M = 2b. Changing the modulation levels implies varying

the number of bits in each symbol. The time taken to transmit a packet of L bits is given

as L
Wb , W being the channel bandwidth. The L bits in the packet constitute the message

to be transmitted along with coding overheads and modulation notification bits. The total

energy expended by the communication subsystem can be mainly divided into two components:
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the signal transmission energy, Etx and the circuit consumption energy, Eckt. The circuit

consumption energy at the transmitter and receiver can further be categorized as the sum

of energy consumption of various circuit blocks like power amplifiers, frequency synthesizers,

Analog to Digital Converter, Digital to Analog converter, mixers and low noise amplifiers

etc. Specifically, it can be divided into the energy consumed by the power amplifiers, Eamp;

energy spent in the mode transitions (active to sleep and sleep to active), Etr and the energy

consumption by the rest of the blocks can be combined as transmitter and receiver circuit

consumption energy Ec. While Eamp and Ec are functions of the transmission time, Etr is

the constant energy consumption in the transient mode. This is mainly dominated by the

frequency synthesizers and is independent of the packet size or the transmission time. Energy

consumption by the power amplifier is given by, Eamp = α Etx where α is dependent on the

modulation scheme and the associated constellation size [26]. Thus the energy expended in

transmitting a packet of L bits can be given as:

EL = Etx + Eamp + Ec + Etr (2.10)

The circuit consumption power, Pc can be computed as a constant for a given sensor node. The

circuit consumption energy, Ec = PcTon then depends only on the time the circuit needs to be

on, Ton. The energy consumption per packet can be written as a function of the transmission

time as

EL = ((1 + α)Ptx + Pc)Ton + Etr (2.11)

where Pc is the circuit power, Ptx is the transmission power and Ton is the transmission time.

Given the bit error probability, Pb, the necessary received power for successful reception can

be approximated as [36],

Pr =
4

3
Nfσ

2(M− 1) ·W · ln(
4(1− 1√

2b
)

b.Pb
) (2.12)

Refer to Table 1 for the meaning of relevant symbols. Considering a κth power path loss

model at distance d, the transmission power can be calculated as Ptx = PrAd, where Ad =

Agd
κLMl [26]. We assume κ = 3.5, antenna gain, Ag = 3.3dB and LMl = 40dB represents

the link margin compensating the hardware process variations and other additive background
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noise or interference. Given a network of V nodes, with each node vi having a computation

task processed at frequency Fi,t and the communication message transmitted at modulation

bi,m, the total energy consumption of a network can be calculated as follows:

∑
vi∈V

(((1 + α)Ptxi,m + Pc)
L

W · bi,m
+ Etr) +

∑
vi∈V

Pi,t
C

Fi,t
(2.13)

024681012

0

1

2

3

4

5
x 10

-7

Modulation Level 

 E
n

er
g

y
 p

er
 I

n
fr

o
m

a
ti

o
n

 B
it

 (
J

) 

 Distance = 25m

024681012
-0.5

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

x 10
-8

Modulation Level 

 E
n

er
g

y
 p

er
 I

n
fr

o
m

a
ti

o
n

 B
it

 (
J

) 
  Distance = 5m

 

 

Transmission Energy

Circuit Consumption Energy

Total Energy
1 2 3 4 5

0

100

200

300

400

Modulation Level 

T
im

e
 (

u
se

c)
 

Packet Length = 2000bits

10         8         6         4         2

Figure 2.5: Effect of transmitter receiver distance on energy components

Fig. 2.5 shows how distance and modulation level effect the relationship between energy

components (transmission energy and circuit consumption energy). At distance d = 5m, mod-

ulation scaling leads to increased energy consumption due to (predominantly) increasing circuit

consumption energy. But at d = 25m, the effect is reversed. Now modulation scaling results in

decreased energy consumption due to (predominantly) decreasing transmission energy. How-

ever, note that distance is the more dominant factor (since it contributes exponentially to the

transmission energy calculation). Hence the lowest modulation at lesser distances will consume

less energy than the highest modulation at a higher distance.
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Table 2.1: Relevant Symbols

Etx Signal Transmission Energy Ag Antenna gain

Eamp Power amplifier energy b Modulation level

Ec Circuit Energy M Modulation symbol

Etr Transient mode energy W Channel bandwidth

Ptx Transmitter Power C Computation cycles

Pr Receiver power Pb Bit error probability

Pc Circuit power Ton Signal Transmission time

σ2 Power spectral density Nf Receiver Noise figure

2.5 MILP Formulation

The interference-aware energy-aware joint scheduling problem (IEJS) can be formulated

as a Mixed Integer Linear Program (MILP) to find the optimal energy consumption of the

network. The formulation presented below uses the following variables: Si,t, Si,m, Mi,j , Ti,j

and Ii,k. The continuous variables Si,t and Si,m denote the start times of task ti and message

mi respectively. The integer (binary) variables Mi,j and Ti,j denote the jth performance level

chosen for the message mi and task ti respectively. Specifically, the variable Mi,j is set to one

if the jth modulation level is assigned to message mi, otherwise, it is set to zero. Similarly,

the variable Ti,j is set to one if jth frequency level is assigned to task ti, otherwise, it is set

to zero. The following MILP formulation outputs a schedule that optimally minimizes the

total energy consumption given a conflict graph while meeting the interference, precedence

and end-to-end deadline constraints. The objective function sums up the energy consumptions

of all the activities that a node performs including message transmission, message reception

and computation. Here, λm specifies the number of available modulation levels and λt is the

number of available frequencies. The MILP can be formulated as:

Minimize

∑
vi∈V

λm∑
m=1

((1 + α)Ptxm + Pc)
L

W · bm
+ Etr) ·Mi,m +

∑
vi∈V

λt∑
t=1

Pt
C

Ft
· Ti,t (2.14)

Subject to:
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Sj,t ≥ 0, (2.15)

Precedence Constraints:

Sj,m +

λm∑
m=1

Lj
Wbm

Mj,m − Si,t ≤ 0, ∀vj ∈ Vc(i), (2.16)

Sj,t +

λt∑
t=1

Cj
Ft
Tj,t − Sj,m ≤ 0, (2.17)

Deadline Constraints:

SR,m +

λm∑
m=1

Lj
Wbm

MR,m ≤ D, (2.18)

Interference Constraints:

Si,m +

λm∑
m=1

Li
Wbm

Mi,m ≤ Sk,m + (1− Ii,k)Q, (2.19)

Sk,m +

λm∑
m=1

Lk
Wbm

Mk,m ≤ Si,m + Ii,kQ, (2.20)

Other Constraints:
λm∑
m=1

Mj,m = 1, (2.21)

λt∑
t=1

Tj,t = 1, (2.22)

Mj,m, Tj,t ∈ {0, 1} ∀j, t,m. (2.23)

Ij,k ∈ {0, 1} ∀j, k ∈ V. (2.24)

The constraint in Eq. 2.15 specifies that the start times of tasks at the nodes should be

greater than or equal to the start of the schedule at time zero. Constraints in Eqs. 2.16 and

2.17 ensure the precedence relations at a node and also between a node and its children. The

constraint in 2.16 ensures that the task at each node vi in the network starts after it receives
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all the messages from its children. Set of children of vi is denoted by Vc(i). Similarly, the

constraint in Eq. 2.17 ensures that each message starts transmission only after the local task

has finished its execution. Eq. 2.18 constraints the completion of the last message at the root

node, R before the end-to-end deadline, D. It is assumed that the root node transmits a final

aggregated message to a base station or a control center where further analysis is performed.

Notice that, if the root node is the base station, then this constraint will change to state

that the start time of the computation task at root + computation time ≤ Deadline. The

constraints in Eq. 2.19 and Eq. 2.20 enforce the interference constraints. For any node vi

which has node vk in its interference set, nodes vi and vk cannot be scheduled simultaneously.

Either node vk starts after vi finishes or vi starts after vk finishes. The binary variable Ii,k

models these situations. When Ii,k = 1, it means that i will be scheduled before k, and when

Ii,k = 0, it means k will be scheduled before i. Q is a very large number with a magnitude of

order 3-4 times larger than the numbers used in the schedule. This is the Big −M technique

used in linear programming to model such constraints. Constraints in Eq. 2.21 and Eq. 2.22

ensure that exactly one performance level is chosen for the entities.

The above formulated MILP can be used to find the optimal energy consumption of the net-

work. However, as the network size increases, the MILP becomes excessively computationally

expensive as shown in our performance evaluation section.

2.6 Joint Task-Message Scheduling Algorithm

We now discuss our proposed heuristic for the IEJS problem. Our scheduling objective is

energy minimization of the network while respecting the precedence, deadline and interference

constraints. Given the intractability of the problem, we adopt a modular approach. By doing

so, we decompose the problem and present the opportunity to plug-in existing solutions for each

subproblem. We decompose the Interference-aware Energy-aware Joint Scheduling Heuristic

(IEJSH) into the following three subproblems:

1. Conversion of a given network topology to a mixed graph: In the first step,

a mixed graph representation is sought to explicitly model the tasks and messages as
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nodes and capture the constraints amongst them. The mixed graph formulation uses the

conflict graph approach [37], to model the interfering links in network graph to nodes in

mixed graph.

2. Initial schedule construction: In the second step, we construct an initial schedule

which follows the precedence, deadline and interference constraints. The tasks and mes-

sages are set to operate at the highest performance level which consumes the least amount

of time. This way if a feasible solution exists, it is guaranteed to be found by an optimal

solution when entities are at the highest performance levels. Once a feasible schedule is

constructed, the amount of slack can be calculated.

3. Slack reclamation: Once an initial schedule is constructed, and slack availability is

known, this slack can be allocated to tasks and messages such that the energy consump-

tion of the network is minimized. Step 2 results in a slotted initial schedule such that

entities are aligned in parallel. This method while suboptimal is so designed because

it makes slack allocation in step 3 computationally easier to perform as discussed later.

The performance levels of the tasks and messages can be scaled such that the energy

consumption can be reduced.

2.6.1 Conversion of network graph to a mixed graph

The network graph is denoted as G(V,E). V is the set of nodes and E is the set of edges such

that e(i, j) denotes that node vi is a child of node vj and hence transmits periodic messages

to node vj . We transform the network graph into a mixed graph to differentiate between the

tasks and messages and to represent the different precedence and interference constraints. A

mixed graph has both directed and undirected edges. Directed edges model the precedence

constraints and undirected edges model the interference constraints. Mixed graph is denoted

by GM = (VM , EM , UM ). The mixed graph has a node for each entity. The vertex set | VM | =

2 * | V | because each node in G performs two tasks, a computation task and a communication

task. In a data aggregation tree, a node can have more than one child node and hence has

different interference ranges with respect to each of the child node. To correctly model the
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different interference ranges, we model each edge in G as a node in GM . An undirected edge

exists between two nodes in GM if the two links in G cannot be scheduled simultaneously. The

precedence and interference conflicts are modeled as follows:

• Precedence Constraints: At a node vj , the computation task tj must precede the com-

munication message mj . In the mixed graph, this is modeled as a directed edge, from

vertex tj to vertex mj , e(tj ,mj). Also, to model the precedence constraints between

children and parent, the communication message mj of node vj must precede its parent

node vi’s computation task ti. In the mixed graph, this is modeled as a directed edge,

from vertex mj to vertex ti , e(mj , ti).

• Interference Constraints: If any two directed edges e(i, j) and e(k,m) in the graph G

interfere, then these two links cannot be scheduled simultaneously. This constraint is

denoted by an undirected edge u(mi,mk) in GM . Similarly two nodes vi and vj in

G, transmitting to the same destination cannot be scheduled simultaneously. This is

modeled in GM by an undirected edge between vertex mi and mj denoted as u(mi,mj).

Given that the network is configured in the form of a data collection tree, the number of

directed incident edges on any node is the number of children of that node. The number

of undirected edges incident on a node is called its interference degree. Fig. 2.6 shows an

illustrative example for the conversion of network graph to a mixed graph.

2.6.2 Initial Schedule Construction

A feasible schedule will assign each node of GM a start time Sti and a finish time Fti while

ensuring all the constraints. We have two types of nodes in the mixed graph: computation

node and communication node. We define a tuple for each computation node vi as {P , Pset},

where P denotes the priority and Pset = {vk : e(vk, vi) ∈ EM} is the set of predecessors of

node vi. For each communication (message) node, vi, the tuple takes the form, {P , D, Pset,

Iset}, where D denotes the degree,and Iset = {vk : | parent(vi) - vk | ≤ (1+ δ)| vi - parent(vi)

|} is the set of nodes interfering with vi.
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Input: Network Graph G = (V ,E)
Output: Energy-unaware Feasible Schedule Schu
1. Convert G into mixed graph GM .
2. For each computation node in GM , make a tuple (P , Pset);

For each communication node in GM , make a tuple (P , D,
Pset, Iset).

3. Sort nodes in GM in a non-increasing order of priority, P .
4. Nodes with equal priority are sorted in non-increasing order of

degree, D.
Q = Sorted list of all nodes in GM .

5. while Q 6= NULL do
Pick the first node vi from Q.
Assign the smallest integer number φi (≥ 0) to vi such that
φi > φj ∀ j ∈ Pset(i), and
if vi is a message then

φi 6= φj ∀ j ∈ Iset(i)
end
Q = {Q} - {vi}.

end
6. C = List of nodes vi, sorted in increasing order of their

assigned number, φ, SlotF inishφprev = 0
while C 6= NULL do

CC = Set of all nodes vi having the same number, φi.
For all nodes in CC {
Sti = SlotF inishφprev
Fti = Sti + Slt, if vi is a task
Fti = Sti + Slm, if vi is a message
}
if all these nodes vi are tasks then

SlotF inishφi = SlotF inishφprev + Slt
end
if all these nodes vi are messages then

SlotF inishφi = SlotF inishφprev + Slm
end
else

SlotF inishφi = SlotF inishφprev + max{Slm, Slt}
end
SlotF inishφprev = SlotF inishφi
C = {C} - {CC}

end

Algorithm 1: Initial Schedule Construction
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Figure 2.6: Conversion of Network Graph to Mixed Graph

The start time of a node must be greater than or equal to the finish times of all its

predecessor nodes. In order to enforce the precedence constraints, we use a priority mechanism.

For each node in GM , there exists a single multi-hop path to the root. This path can be found

by considering only the directed edges. Priority of a node is the number of hops in this path.

Thus a child will always have higher priority than its parent. Nodes are now arranged in a

non-increasing order of priority and selected in this order for scheduling. Due to this, a child

node will be scheduled first. When the parent node is selected for scheduling, its start time

must be greater than or equal to the finish time of all its predecessors (which would already

be scheduled given their higher priority) thus ensuring the precedence order.

Unlike computation nodes, scheduling for message nodes requires additional considerations

for interference constraints. The schedules of interfering nodes must be excluded in time. In the

mixed graph, we model interference constraints among communication nodes by drawing an

undirected edge between them. The number of undirected edges incident upon a message node

is defined as its degree, D. Now, nodes with equal priority are sorted in non-increasing order

of their degree and picked in this order for scheduling. We utilize the approach of ordering the

message nodes in decreasing order of degree [28], so that nodes which interfere with maximum

number of other nodes are scheduled first. Hence nodes scheduled later have to check for fewer
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nodes before being scheduled, thus reducing the scheduling overhead. Now a node is picked

from this sorted set and assigned the smallest slot not yet assigned to a conflicting entity.

Algorithm 1 presents the pseudo code for the initial schedule construction.

Unlike traditional TDMA scheduling where all the slots are of same length, joint scheduling

of tasks and messages requires variable length slots. At the start, all tasks and messages are

assumed to be at the highest level. We define two types of time slots, Slt and Slm for tasks

and messages respectively. Notice that since the data packet size for the messages and the

computation cycles for tasks is constant across the whole network, given a performance level

every node will require the same amount of time for task computation and message transmission

respectively.

As shown in Algorithm 1, given a sorted set of entities, we first decide which entities can

be scheduled in parallel, by assigning each entity a number. Later based on the composition

of the set of entities having the same number, the slot length can be decided. For example,

if all task nodes are aligned in parallel then the slot length will be different than when all

message nodes are aligned in parallel. But if a combination of tasks and messages are aligned

in parallel, the slot length will be determined by the entity with larger time requirement. Due

to unequal time requirements, holes can be created in the schedule as shown in Fig. 2.7.

If the finish time of the last node is greater than the deadline, then this set of tasks and

messages cannot be feasibly scheduled. Please note that the objective in step 2 is not to create

a minimum makespan schedule. Rather it is to create a slotted schedule such that entities are

aligned in parallel. This approach is so designed because it makes slack allocation in step 3

computationally easier to perform as described in the next section. For the mixed graph shown

in Fig. 2.6, the initial schedule can be constructed as shown in Fig. 2.7. The tasks of the leaf

nodes are all scheduled in parallel in the beginning of the schedule. They are removed in Fig.

2.7 for the sake of clarity.
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2.6.3 Slack Reclamation

Any time slot (slack) not occupied in the initial schedule can be used by an entity to

lower its performance level. Additional slack allocation to an entity may result in a lower

performance level thus reducing the energy consumption of the network. This implies altering

the previously assigned start and finish times of the scheduled entities. Considering the conflicts

present, altering the start and finish times of a single entity might lead to a domino effect,

where in the worst case, the schedule of all the successive entities needs to be altered by

varying amounts. Due to this, allocating slack to any single entity would result in modifying

the start and finish times of O(VM !) entities, where VM is the total number of nodes (tasks and

messages) in the graph. This becomes computationally very expensive with increasing network

size. The solution to this problem demands finding a subset of entities which will yield the

highest rewards in terms of energy savings, while leading to as simple conflict management as

possible. In order to do that, slack distribution needs to be performed in two steps:

1. All Rows Slack Reclamation

2. Scattered Hole Reclamation

2.6.3.1 All Rows Slack Reclamation

The energy saving capability of each entity can be calculated as the reduction in energy

consumption per unit of additional slack allocation. We use the energy gain metric to select

the entity that gives the highest energy savings for each additional unit of time allotted to

it. We use a matrix like data structure to find this set of entities. We transform the schedule

constructed in step 2 into an Energy gain matrix A. Each column c of the matrix corresponds

to the set of entities scheduled in parallel and each row r corresponds to the set of entities

scheduled serially. The entry, Arc in the matrix is the energy gain value Erc of the corresponding

entity vr in the schedule. This value is subject to change once the entity has been scaled down.

We configure a greedy algorithm that searches for a column of the matrix A, such that the

sum of energy gain values of entities in that column are the highest among all columns. For a



www.manaraa.com

32

column c, the sum of energy gain values of entities scheduled in parallel is denoted as Sumc.

Allotting a portion of the slack to this column, simplifies conflict management as the schedules

of all the successive columns can be altered by this fixed amount of slack. Algorithm 2 presents

the pseudo code for slack reclamation. We define reclaimable slack as the difference between

the schedule finish time and the deadline. The all rows slack reclamation algorithm is capable

of recognizing and exploiting slack that is present across all the rows of the schedule. In the

next section, we discuss how to exploit slack that is scattered as holes in the schedule.
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Figure 2.7: Example schedule showing reclaimable slack and scattered holes

The matrix A can be written as,



Eta Ema Emb Et1 − Em1 − − −

Etb − − − − − − − −

Etc Emc Emd Eme Et2 − Em2 EtB EmB

Etd − − − − − − − −

Ete − − − − − − − −

Etf Emf Emg Et3 Em3 − − − −

Etg − − − − − − − −

Eth Emh Et4 Em4 − − − − −



2.6.3.2 Scattered Hole Reclamation

At the end of the all rows slack reclamation phase, all the reclaimable slack is utilized and

the schedule makespan equals the deadline. However, slack could still be present as holes in
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Input: Energy-unaware schedule, Schu
Output: Energy-aware schedule, Sche
1. Calculate Reclaimable slack,

R = Deadline- Schedule makespan
2. For each entity va in Schu, calculate Energy-gain

as, Ea =
Eka−E

k−1
a

tk−1
a −tka

where Eka = energy consumption of entity a at level
k and tka = time consumption of entity a at level k.

3. If Ea < 0 then Ea = 0.
4. Construct an m x n matrix, A of energy gain values.

5. For every column n, calculate sumn =

m∑
r=1

Ern

6. while R ≥ 0 do
Find column c having the maximum sumc,
calculate shift = max{(tk−1

1c - tk1c),... (tk−1
mc - tkmc)}

if shift ≤ R then
k= k-1 for all entities in the column c.
Modify the finish time.
R = R- shift.

end

end
/* end of All rows slack reclamation phase.*/
7. Let S be the set of all entities sorted in

non-increasing order of their Energy gain.
8.while S 6= NULL do

Pick an entity i from S.
if (StSuccessor(i) - Fti) ≥ (tk−1

i - tki ) then
if i does not violate any constraints with neighboring nodes then

reduce performance level.
Change the finish time.

end

end
Remove i from S.

end
/* end of Scattered slack reclamation phase.*/

Algorithm 2: Two phase slack reclamation

the schedule as shown in Fig. 2.7. Variation in the execution times of entities and variation

in the energy gains of different entities explain the presence of this slack. Such slack should

be allocated to an entity which can use this slack without violating any constraint. The way

initial schedule is constructed, each node is assigned the smallest possible start time. Further,

at the termination of all rows slack reclamation phase, the schedule makespan is equal to the

deadline leaving no room for shifting of a set of serially scheduled entities. This means that

this type of slack could be best utilized by the individual entity adjacent to the hole such that

if this entity did not interfere with any neighboring node in the beginning, then it must not

interfere with it once the slack is allotted to it. For every such slack allocation to any entity,

the start and finish times of the neighboring nodes (in adjacent columns) in the schedule are
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checked for constraint violations.

2.6.4 Computational Complexity

We assume that there are V nodes and E edges in the network graph to begin with. Upon

conversion to mixed graph, there will be VM = (V *2) nodes. In step 1, finding the interference

degree of a node requires searching the entire vertex set VM to find nodes that satisfy Eq. 2.9

which can be done in time O(V 2
M ) . In the initial schedule construction algorithm, sorting the

nodes in non increasing order of priority takes O(VM logVM ) time (step 3). Again sorting in non

increasing order of degree takes O(VM logVM ) time . Allocation of start time and finish time

to each node in step 4 can be done in O(V 2
M ) time. Thus the complexity of initial schedule

construction phase is O(VM logVM + V 2
M ).

At the end of the initial schedule construction, the availability of slack is known, at which

point slack distribution can be performed. In the worst case, all the performance levels of

all the nodes in the schedule might be checked. The computational complexity of the slack

reclamation algorithm can then be derived as O(V 2
M (λt + λm)), where λt is the number of

available discrete frequencies for DVS and λm is the number of available discrete modulation

levels for DMS. The overall complexity of the proposed heuristic is thus derived as O(VM logVM

+ V 2
M + V 2

M (λt + λm)).

2.7 Performance Evaluation

We perform extensive simulations to access the performance of our proposed algorithm

IEJSH. Due to the absence of any existing related work with the same set of objective function

and constraints, we compare our results with the following three: optimal results obtained by

the MILP; a scheme NoCheck which does not take into consideration the nature of DMS; and a

scheme NoScaling which constructs an initial feasible schedule according to Algorithm 1, but

does not perform either DVS or DMS. The performance metric of interest is the normalized

energy consumption of the network. The total energy consumption of a network is calculated

using the Eq. 2.14. This energy consumption is then normalized with respect to the energy
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consumption of the NoScaling scheme which does not scale entities at all. Each point in the

graph is the average of 20 simulation runs.

Widely available motes such as iMote-2 use the DVS technology, but currently there are no

motes available which implement the DMS capability. Hence, we build a custom Java simulator

to simulate the different scenarios. We compare the results of our scheme with the optimal

results obtained through the MILP formulation. We used the ILOG CPLEX 12.2 software [34]

to solve the MILP. We generate networks of varying sizes. For each network, we randomly

assign location to the nodes in a 100m x 100m area. The range of the sensor node is taken

as 20m. The complexity of the MILP can be estimated by the size of the input problem.

For a 50 node network, there were 4000 binary variables, 400 continuous variables and 20500

constraints.

2.7.1 Simulation Parameters

For each simulation, we use the following parameters:

• Computation Subsystem: The CPU is assumed to be the Intel Xscale PXA27x CPU

which is used on iMote-2 sensor node. Task Cycles, C= 5000, frequency f can take values

from the set F= {624MHz, 520MHz, 416MHz, 312MHz, 208MHz, 104MHz} and

the associated power consumption is P= {925mW , 747mW , 570mW , 390mW , 279mW ,

116mW} [38].

• Communication Subsystem: Data packet size, L = 2000 bits, Nf = 10dB, σ2 = -

174dBm/Hz, δ = 0.1, Pb = 10−3, W= 3MHz. Modulation level b could take values

from the set, b = {2, 4, 6, 8, 10}. Given a transceiver structure, certain components can

be evaluated to be constant like circuit power, Pc = 0.2505 mW , and transient energy,

Etr = 0.5*10−6 J [26].

Next, we present the effect of variation of different parameters on the network energy con-

sumption. Specifically, we vary the average internode distance, davg; packet size per message,

L; computation cycles per task, C; number of nodes in the network; and the slack factor, sf .
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Slack factor is defined as
D−Schf
Schf

, where D is the deadline and Schf is the schedule makespan

at the end of the initial schedule construction phase (step 2).

2.7.2 Effect of slack variation

Fig. 2.8 and Fig. 2.9 show the effect of increasing slack on the total energy consumption

of the network comprising of 50 and 100 nodes respectively. One could think that more

slack should result in more energy savings. But as shown in Fig. 2.5, at lower transmitter-

receiver distances, the circuit consumption energy becomes a dominant factor. Further, at

lower modulation levels, when the transmitter receiver circuit needs to be on for a longer

duration, the circuit consumption energy overshadows any energy savings acquired due to
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Figure 2.8: Variation in slack factor, Nodes = 50
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Figure 2.9: Variation in slack factor, Nodes = 100

modulation scaling. Thus at smaller distances, the lower modulation levels do not neces-

sarily give better energy savings. This means that slack should only be allocated as long as

there is positive energy savings.

Notice that the energy consumption of NoCheck scheme keeps increasing and crosses that

of NoScaling (at sf > 1). This is because NoCheck keeps reducing the modulation levels

with increasing slack factor without ensuring if this slack allocation results in positive energy

savings. The lower modulation levels result in overall higher energy consumption.

On the other hand, IEJSH ensures that the successive slack allocation should result in
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energy savings. MILP and IEJSH show better energy consumption than NoCheck and

NoScaling. The energy consumption of MILP and IEJSH reduces in the beginning but

becomes constant after sf = 0.4. In these cases the optimal modulation level is not the

smallest modulation level, instead it is the level after which there can be no positive energy

savings with modulation scaling. At values of slack factor (≥ 0.2) IEJSH gives optimal

results. However, network energy optimization using MILP is computationally expensive.

For networks with 100 nodes, IEJSH takes approximately 3-5 seconds, while the average

running time of the MILP-based approach ranges from 0.34 sec (sf = 1.0) to 3940 sec (sf =

0.3) on a AuthenticAMD machine with a AMD Opteron 250 2.4GHz CPU. This is a significant

reduction in the running time, while still obtaining near optimal solutions (0.12% more than

the optimal solution for sf= 0.3 and exactly same values for sf = 1.0). For cases where the

reclaimable slack is very less (sf ≤ 0.2 ), the MILP does not converge on any solution (even

after 70 hours) as shown in Fig. 2.9.

2.7.3 Effect of variation in packet size

Fig. 2.10 serves to show the pronounced effect of circuit consumption energy which becomes

comparable to the transmission energy with increasing packet size and low transmitter-receiver

distance. The average transmitter receiver distance is 10m. With increasing packet sizes the

transmitter and receiver circuit needs to be on for longer time, thus increasing the circuit

consumption energy. This effect becomes more dominant at low modulation levels. NoCheck

scheme which kept lowering the modulation level resulted in higher energy consumption than

if it had not opted for any scaling (similar to NoScaling). Higher energy consumption by low

modulation levels is also shown by the crossover in the energy consumption performance of

NoCheck and NoScaling scheme at packet sizes (≥ 2500bits). Higher modulation is capable

of more energy savings as compared to the low modulation levels. This is shown by reduced

energy consumption of IEJSH and MILP because they stop scaling once it results in negative

energy savings. IEJSH performs closely as compared to the MILP . At L= 1000 and 5000,

IEJSH, respectively, incurs as small as 0.29% and as large as 7.5% more energy than the
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MILP as shown in Fig. 2.10. Please see Fig. 2.5 for better understanding of the relationship

between energy components and transmitter-receiver distance.
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Figure 2.11: Variation in inter-node distance

2.7.4 Effect of variation in average distance between nodes

Fig. 2.11 shows the effect of variation of average distance between nodes on the total energy

consumption. As the distance between nodes increases, the effect of interference reduces.

Thus more and more nodes could be scheduled in parallel, which leads to a huge amount

of slack. The transmission energy is an exponential function of the distance, hence increase

in the transmitter-receiver distance leads to higher transmission energy consumption. This

also means higher energy savings per step down of the modulation. This explains the drastic

reduction in the energy consumption of our heuristic versus NoScaling, where no scaling is

performed. Note that the vertical axis represents energy consumption in logarithmic scale

for the sake of clear representation. MILP and IEJSH give exactly similar results at lower

distances. This is because at such lower distances the higher modulation levels are the best

modulation level. At higher distances, the results of IEJSH match closer to NoCheck as

compared to MILP . This is obvious since transmitter-receiver distance is the major factor

which differentiates between IEJSH and NoCheck.
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2.7.5 Evaluation of Initial Scheduling Phase

We evaluate the performance of the initial schedule construction phase (step 2) of our

proposed algorithm with respect to the schedule makespan. We compare it with the schedule

makespan resulting from an optimal initial scheduling phase. Our proposed slotted approach

for step 2 creates an initial schedule with greater makespan than the optimal. The factors

that play a crucial role are the different sizes of tasks and messages. We recognise that step

2 may not be able to construct a feasible schedule at times when deadlines are very stringent.

However, this design serves to make slack allocation in phase 3 computationally simpler.

In these results, please note that while the proposed algorithm creates an initial schedule

with greater makespan, this design serves to make slack allocation in phase 3 computationally

simpler.

Fig. 2.12 shows the performance of initial scheduling phase with respect to varying topology.

The cluster size is varied from 2 nodes to 10 nodes in each cluster while keeping the network

size same at 50 nodes. We notice that varying topology does not affect the performance of our

algorithm as shown by the constant gap between the performance of proposed approach and

optimal solution.

The main reason behind the difference between the performance of initial scheduling by

proposed approach and the optimal scheduling is the inequality in the size of task and message.

Fig. 2.13 shows the performance of step 2 with respect to varying ratio between the computation

time and communication time. We keep the message size constant and vary the computation

cycles thus increasing the computation time required by each node. Notice that when the ratio

between task and message size is close to 1, there is very less gap between the performance

of our approach and the optimal. This gap keeps increasing with increasing inequality in task

and message sizes. as shown in Fig. 2.13. However, these results of step 2 are given as input

to step 3 where slack allocation is performed. When we compare the results at the end of step

3 as shown in Fig. 2.14, we see that there is a constant gap between the energy consumption

between proposed algorithm and optimal solution even with increasing computation load.
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Figure 2.12: Effect of varying topology on schedule

makespan

0 2 4 6 8 10 12

x 10
4

800

1000

1200

1400

1600

1800

2000

2200

2400

Computation Cycles

S
c
h

e
d

u
le

 M
a

k
e
sp

a
n

 

 

MILP

IEJSH:Phase 1

Figure 2.13: Effect of different task-message sizes

on schedule makespan

2.7.6 Effect of variation in computation workload

Fig. 2.14 shows the effect of variation in computation load on the total energy consumption.

Due to difference in the task and message sizes, holes are created in the schedule. This slack

present as holes can be left unclaimed by messages due to high degree of interference amongst

them. At this point, tasks can easily reclaim that slack (though often for a smaller energy

gain) given that tasks do not have any interference constraints with other entities. Now,

the larger the difference in task and message time, the more slack exists as holes and hence

more energy savings can be incurred when tasks scale down. But with increasing computation

cycles, tasks occupy more time thus reducing the slack size and hence lesser opportunities

for tasks to scale down. Thus energy savings reduce with increasing computation cycles. At

all times, MILP being capable of an exhaustive search utilizes the slack in a better manner

than our heuristic. The change in computation workload behaves differently than change in

communication workload (as shown in Fig. 2.10). Notice that in this caseNoCheck consistently

performs better than NoScaling. This is because tasks have monotonically decreasing energy

consumption with decreasing frequency levels.
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2.7.7 Effect of Network size

Fig. 2.15 shows the effect of network size on the energy consumption. The static slack

provided as input is equal to 0.2. The Fig. 2.15 shows that with increasing network size,

IEJSH continues to yield the best performance as compared to the other schemes. For
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Figure 2.14: Variation in computation load
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Figure 2.15: Variation in Network Size

networks with 50 nodes, IEJSH yields similar results (0.16% more than the optimal result).

Also, for networks consisting of more than 50 nodes, the MILP does not converge on any result

(even after 70 hours) on a AuthenticAMD machine with a AMD Opteron 250 2.4GHz CPU.

Absence of any result by MILP is shown by dotted lines. Thus, it is evident that with

increasing network size, it becomes computationally very expensive and even infeasible to find

the optimal result using MILP .

2.7.8 Comparison of different algorithms

Comparison between the different schemes with respect to computation time required in

scheduling is shown in Table 2.2. The energy consumption by each scheme for computing a

schedule is proportional to the total computation time required by the scheme. Thus higher the

computation time, higher is the energy consumption by the scheme. We enlist the computation

time required (which is a measure of computation energy required for scheduling) and also the
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normalized energy consumption of the resulting scheduled network. Notice that computation

time becomes a dominant factor while solving the problem through MILP . At high network

size (= 100 nodes) and strict deadlines (slack factor ≤ 0.2), MILP does not converge even after

70 hours. The performance of all other schemes remains similar with respect to scheduling

time (of the order of 1-2 sec).

Table 2.2: Computation time and energy comparison

Number of Nodes Slack Factor MILP IEJSH Scheme NoCheck Scheme NoScaling Scheme

25

0.1 (0.543, 343s) (0.544, 1s) (0.566, 1s) (1, 1s)

0.2 (0.541, 127s) (0.542, 1s) (0.582, 1s) (1, 1s)

1 (0.540, 0.01s) (0.540, 1s) (0.857, 1s) (1, 1s)

50

0.1 (0.634, 2454s) (0.664, 2s) (0.682, 2s) (1, 2s)

0.2 (0.633, 348s) (0.634, 2s) (0.707, 2s) (1, 2s)

1 (0.632,0.24s) (0.632, 2s) (0.951, 2s) (1, 2s)

100

0.1 (–, 70hr) (0.720, 2s) (0.796, 2s) (1, 2s)

0.2 (–, 70hr) (0.719, 2s) (0.820, 2s) (1, 2s)

1 (0.718, 2.3s) (0.718, 2s) (1.01, 2s) (1, 2s)

2.8 Conclusion

In this chapter we formulated the problem of joint scheduling of tasks and messages in

the presence of precedence, interference and deadline constraints. We provided a proof of

the hardness of the stated problem. We presented a three phase polynomial time heuristic

to perform scheduling with the objective of energy minimization in the presence of these

constraints. We efficiently performed slack allocation considering that in dense deployments of

WSN with small transmitter receiver distances, DMS does not monotonically reduce the energy

consumption [26]. We evaluated the performance of the proposed algorithm for a variety of

scenarios and our results show that the energy savings obtained by the proposed algorithm

competes closely with that of the MILP solution.
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CHAPTER 3 Online scheduling: Energy-aware Adaptive

MAC Protocols

3.1 Summary

In this chapter, online scheduling algorithms that can utilize resources left unused at actual

runtime conditions to minimize energy consumption in Real-time Wireless Sensor Networks

(WSNs) are proposed. Adaptive algorithms are developed which exploit the energy-latency

tradeoff by utilizing runtime slack. The proposed algorithms work at node level such that

each node can independently perform some action to reduce its energy consumption during its

operational time. For this purpose, two widely used Medium Access Control (MAC) schemes

are targeted, namely, Time Division Multiple Access (TDMA) and Carrier Sense Multiple Ac-

cess/Collision Avoidance (CSMA/CA). In both the schemes, different opportunities to reduce

energy consumption are identified at the node level during the node’s runtime.

With respect to TDMA systems, the proposed approach differs from existing research on ac-

counts of lightweight slack generation method by exploiting temporal correlation and achieving

energy minimization by trading generated slack for energy savings using DMS. Then, heuris-

tics with varying complexities are presented to reduce energy consumption while preserving

constraints.

For CSMA/CA systems, the absence of channel adaptation and load adaptation results

in energy wastage due to retransmissions and low success rate. In order to address this, an

Adaptive-CSMA/CA protocol which accounts for varying channel and load conditions at a

node by influencing the selection of either low energy or low delay transmission option is

presented. An energy-delay metric is devised that helps a node select the best message and
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modulation to obtain joint reduction in energy and delay at the time of transmission.

The rest of the chapter is organized as follows: section 3.2 explains the proposed energy

aware scheduling algorithms with respect to the TDMA system. Section 3.3 presents schedul-

ing algorithms with respect to the CSMA/CA system. Conclusion is presented in section 3.4.

3.2 TDMA systems: Energy minimization by exploiting data redundancy

WSNs are used widely for monitoring applications where the main purpose is continuous

data collection of environment parameters such as temperature, pressure, wind speed etc.

Since sensor data streams are measurements of continuous physical phenomenon, spatial and

temporal correlations within data streams are inherent. Such spatial and temporal correlation

exhibited by WSNs can be exploited to reduce energy consumption.Thus the probability that

the data sampled by a node is highly correlated or repetitious over time is quite high. Consider

the sample data trace shown in Fig. 3.1 consisting of two days of temperature variation in a

room [1]. The Analog to Digital Converter (ADC) readings correspond to the temperature

sensor readings. The horizontal portions in the trace are circled to show temporally correlated

readings. In scenarios like this, making a smart decision by not sending the same repeating

sensor measurement could save a large amount of energy. We propose schemes that employ

such smart decisions and reduce the energy consumption of the network.
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Figure 3.1: Sample trace of temperature sensor [1]



www.manaraa.com

45

Previous research works attempt to exploit this correlation by way of aggregation or adap-

tive sampling. We propose determination of the data correlation at each node by way of local

computation and propose avoiding transmission of significantly similar data. This can lead to

unused time slots at runtime (dynamic slack) which can be traded off for energy savings. Our

approach uses techniques namely Dynamic Voltage Scaling (DVS) and Dynamic Modulation

Scaling (DMS), which utilize the slack generated dynamically to reduce energy consumption

in a real-time environment. We propose heuristics with varying complexities for efficient slack

management. We evaluate the performance of these heuristics by simulating diverse network

conditions while incorporating different overheads. Our results show that the proposed heuris-

tics can achieve energy savings up to 40% more than the baseline algorithms employing DVS

and DMS, and, can achieve performance competitive with a Clairvoyant algorithm under net-

work scenarios with high volume of redundant messages.

In the first part of this chapter, we propose a communication scheduling mechanism for a

duty cycled data collection tree network. The main contributions of this chapter are as follows:

1. We propose a lightweight node level slack determination scheme by exploiting approxi-

mate, bounded-loss data collection in sensor networks. Each node independently decides

whether the currently sampled data is significantly different from the previous reading.

If the data is not significantly different, it does not need to be transmitted. This smarter

way of not transmitting a repetitious data packet has two advantages: firstly, commu-

nication energy savings and secondly, the unused time slot (slack) can be used by other

nodes to reduce their communication energy.

2. We propose smart slack distribution schemes. The proposed schemes detail the effective

utilization of the resource (slack) left unused by nodes having redundant message. The

schemes work in a distributed manner such that control overhead is minimized while the

energy savings can be increased.

In this chapter we show that our approach based on smart slack determination and distribution,

is capable of significant reduction in energy consumption as compared to the existing schemes.
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We concentrate on the communication subsystem since it dispenses the maximum share of

energy.

3.2.1 Related Work

A taxonomy of approaches for energy saving in sensor networks can be found in [39] and [40].

Numerous methods have been proposed to lower energy consumption of a WSN by suppressing

redundant information in continuous data collection applications. These energy efficient data

acquisition methods can be categorized into adaptive sampling schemes [1], [41], [14], [15]

and [42]; model based schemes [43] and [44]; and data aggregation schemes [45], [46].
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Figure 3.2: System Model
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Figure 3.3: Schedule of task set at each node

Adaptive sampling schemes [1], [41], [14], [15] and [42] propose adaptive adjustment in

the sampling rate of sensors according to the statistical features of the environment being

monitored. In [41] and [14], authors build a spatio temporal correlation aware framework

and perform adaptive and coordinated sampling in order to minimize energy. In [15] and

[42], authors describe an adaptive sensor sampling scheme where nodes change their sampling

frequencies autonomously based on time-series forecasting, so as to reduce energy consumption.

However, these methods are energy efficient only in highly correlated scenarios. This is because

these schemes call for regular control frame exchange amongst participating leaf nodes and

the cluster head, resulting in non-trivial overhead due to control message exchange in mildly

correlated applications.
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Approximate data collection methods [43] and citeApproxData create models of the sensor

data and the future data is then predicted based on these models at the sink thus removing

the need for regular transmission by the source nodes. In [43], authors propose approximate

data collection with bounded loss through the use of replicated dynamic probabilistic models.

The basic idea is to maintain a pair of dynamic probabilistic models over the sensor network

attributes, with one copy distributed in the sensor network and the other at a base station.

The sensor nodes always possess the ground truth, and proactively route the data back toward

the base station only when they sense anomalous data. [44] proposes an estimation model and

proves rated error bounds of data collection using this model. Although these methods leverage

the spatio-temporal correlation, they require complex estimation model generation which has

to be application specific and the estimation models need regular fine tuning and updating.

In [47], such associated overheads due to prediction have been categorised and the tradeoff is

examined.

Data aggregation is proposed in [45], [46] to generate a concise report of the data. In [46],

a combined approach to data aggregation and energy reduction using Dynamic Modulation

Scaling [2] is proposed. However in these schemes, data aggregation happens at cluster heads.

The repetitious, redundant data still needs to be communicated by each sensor to the cluster

head before being termed as redundant. This leaf–aggregator node communication expends a

large amount of energy over extended time periods.

Our solution is tailored for continuous data collection applications of WSN, where temporal

correlation in sensor data can be exploited in a lightweight manner to generate runtime slack

which can then be traded off to minimize energy consumption. We use two energy minimization

schemes: Dynamic Modulation Scaling (DMS) [2] and Dynamic Voltage Scaling (DVS). These

are techniques used to scale the message modulation levels (DMS) or processor frequency and

voltage levels (DVS) such that the energy consumption of the messages (DMS) or tasks (DVS)

is reduced at the expense of increased performance time. [23] and [24] propose making use

of energy latency trade-off and the combined usage of DVS and DMS in order to minimize

the energy consumption of networked systems. These works present centralized scheduling
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algorithms that can tradeoff static slack to obtain energy savings. In [24], energy aware data

acquisition approach specific to WSN is presented. However, authors do not take into account

any spatio-temporal correlation in sensor data. In contrast, we propose algorithms for energy

aware runtime scheduling and combine the benefits of data correlation and slack reclamation

through DMS. Finally, we must note that our approach can also be used in conjunction with

other techniques such as [43], for example, to combine the advantages of energy minimization

techniques and advanced spatio-temporal correlation models.

3.2.2 System Model

We consider a WSN consisting of n nodes. The network is generally configured in the form

of a unidirectional tree as shown in Fig. 3.2, for the purpose of data collection from several

leaf nodes to the root node.

• A leaf node i performs a set of periodic tasks, Ti = { Si, Ci, Mi}, where Si is the sensing

task, Ci is the computation task (message redundancy determination, data processing

etc.) and Mi is the communication task (message transmission to its parent).

• The parent node aggregates the message received from its child nodes and transmits it

to the higher level node. Root node performs data analysis of the collected data.

• At node vij , the computation task is denoted by Cij having CCij computation cycles

and the outgoing message is denoted as Mij with Lij bits.

The scheduling of tasks and messages follows several constraints as enumerated:

• Precedence constraints: Each node performs periodic sensing and computation task, at

the completion of which it can begin its communication. Similarly each parent node

starts its local computation only after receiving all the messages from its child nodes. A

parent node buffers the messages from its child nodes before performing data aggregation.

Fig. 3.3 shows the sequence of steps for a cluster with a Parent node and three Child

nodes.



www.manaraa.com

49

• End-to-end latency constraint: Each message that is generated at a leaf node should

reach the root node within a specified deadline, D.

• Interference constraints: For channel access, we assume that each node is allotted a time

slot for communication with its cluster head. The nodes in a cluster receive exclusive

access to the wireless channel since the cluster head can only receive from one transmitter

at a time. Nodes in two different clusters can have shared access to the channel if they do

not interfere with each other. We follow the protocol model [35] for interference modeling

in wireless networks, according to which, if a node vi transmits to a node vj , then this

transmission is successfully received by node vj if

‖vj − vk‖ > (1 + δ) ‖vj − vi‖ (3.1)

for any node vk simultaneously transmitting to any node vm at the same time using

the same channel. Using this model, consider two adjacent clusters with cluster heads

denoted as i and j. Let di denote the maximum distance between i and any of its child

nodes and mi denote the minimum distance between i and any of the child nodes in

the adjacent cluster. Now if conditions in Eq. 3.2 are satisfied then the simultaneous

transmission by any two nodes in these adjacent clusters do not interfere with each other.

mi > (1 + δ) di , mj > (1 + δ) dj (3.2)

Interference Model: In this chapter, we use the protocol model (a.k.a. disk graph

model) as opposed to the more accurate but highly complex physical model (a.k.a. SINR

model) [35]. Link scheduling is shown to be NP-complete in [48]. Given sufficient transmis-

sion power, fixed transmission range is considered unattainable due to the interference effect

of simultaneously active unintended transmitters. Under the protocol model, the impact of

interference from a transmitting node is binary whereas physical model treats interference at

a receiving node as an aggregate noise from unwanted transmitters. Due to this simplification,

protocol model suffers from the following side effects:

1. Conservative Case: For a transmission to be successful, the receiver should be outside

of the interference range of all the non-intended transmitters. This can result in reduced
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schedulability.

2. Optimistic Case: When a node falls outside the interference range of each non-intended

transmitter, the protocol model assumes that there is no interference. This can result in lossy

transmissions, as small interference from different non intended transmitters can aggregate and

prevent achieving a minimum threshold necessary for successful receptions.

We emphasize that the following reasons help minimize the negative impact of interference

on our proposed schemes:

1. The impact of interference from nodes in neighboring clusters is minimized by following

condition in Eq. 3.2.

2. Nodes do not employ any distance based power control. This helps to define a common

maximum transmission and interference range throughout the network.

3. We set the ratio of interference to transmission range to be equal to 2. Recent research [49]

shows that it is possible to use the protocol model as a good simplification for the

physical model when the interference range is set appropriately (the optimal ratio between

maximum interference range and maximum transmitter range should be within [1.5, 2]).

Our algorithms can be extended by following this work, however this is out of the scope

of our current work.

Applications which benefit most from our schemes have strategic deployments with close-

knit clusters and relatively large inter-cluster distance (larger than the maximum interference

range). Consider application such as transmission line monitoring, where sensors on a trans-

mission tower form a cluster and the neighboring cluster is on the neighboring transmission

tower; or medical monitoring where a cluster of sensors is monitoring a patient in separate

rooms etc. Other factors that can reduce the impact of interference are use of a different fre-

quency by each cluster for intra-cluster communication or use of directional antennas instead

of omnidirectional antennas.

Scheduling Model: We assume that an initial feasible schedule is constructed using

known link scheduling schemes during the initialization phase after sensor deployment. If
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static slack prevails after the construction of initial feasible schedule, the centralized offline

scheduler can assign frequency levels to tasks and modulation levels to messages using the

Gain based Static Scheduling (GSS) algorithm [23]. The resulting schedule is then provided as

an input to our schemes. The communication pattern of the tree has a single repeating frame.

Each frame consists of time slots for the nodes in a level to send messages to their cluster

heads.

Communication model: The modulation scheme considered is Quadrature Amplitude

Modulation (QAM). The channel is modeled as frequency-flat Rayleigh fading model. Let

b denote the number of bits per modulation constellation symbol, N0
2 denote the channel

noise power spectral density and BER denote the bit error rate. Etransmit is the necessary

transmitted energy, d is the distance between the transmitter and the receiver and d0 is a

normalizing constant that depends on the wavelength.

We assume that the propagation loss follows a polynomial model and the power decays in

the αth order of the distance. As a result, the total energy used in message transmission from

node i to node j can be expressed as,

Eijtransmit = (
dij
d0

)α.
Lij .(2

bij − 1)

6bij
.
N0

BER
(3.3)

In addition to the transmission energy, energy consumed by the transmitter (node i) and

receiver (node j) circuitry, is given by,

Eicircuit =
Lijβi
bij

(3.4)

Ejcircuit =
Lijβj
bij

(3.5)

where βi and βj are implementation-dependent constants. Thus, the total radio energy spent

for a message transmission at modulation level b is given as,

Eijmessage = Eijtransmit + Eicircuit + Ejcircuit (3.6)

W denotes the channel bandwidth in hertz. The corresponding channel transmission rate in

bits per second can be calculated as Wb. We assume that the BER is low enough to provide
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the necessary message reliabilities. The time taken to transmit an L-bit message in the shared

wireless medium is calculated as L
Wb .

In DMS, additional slack allocation to a message results in a lower message modulation

thus reducing the communication energy consumption of that node. Slack can be differentiated

as static or dynamic.

Static slack: Static slack is the difference between the application specific deadline and the

initial schedule makespan. The availability of static slack is known in advance. The existing

GSS algorithm [23] computes an energy-aware schedule given the static slack in a centralized

manner.

Problem Statement : The static slack allocation problem can be stated as: Given a

feasible schedule that satisfies the deadline and precedence constraints, allocate slack to different

messages by varying their modulation levels such that the energy consumption is minimized

while still preserving the feasibility of the schedule. The problem is NP-hard and the complexity

of the problem can be proved by the polynomial reduction of the Multiple Choice Knapsack

Problem to the current problem [50].

Dynamic slack: Dynamic slack is generated at runtime due to runtime variations such

as absence of messages due to spatial or temporal correlations, channel variations etc. Given

the limited connectivity amongst sensor nodes distributed over a large physical area, the huge

cost of communication, varying network conditions and varying node capabilities, making

centralized scheduling decisions at runtime in order to allocate the dynamic slack is highly

energy inefficient. In this chapter, we present three heuristic solutions to address the problem

of runtime slack distribution in a distributed manner in order to achieve energy efficiency. Our

focus is on effective allocation of slack to relevant messages such that the slack generated at

run time is utilized and the energy expenditure is minimized in a best possible manner while

satisfying all the constraints, given a feasible static energy-aware schedule that does not violate

any deadline or precedence constraints.
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3.2.3 Energy-aware Scheduling Algorithms

In this section we present a framework for effective energy minimization of a network by

exploiting runtime variations. The two key functions required to be carried out are: (1) Slack

Determination, and (2) Slack Distribution. By way of slack determination, the amount of

slack that exists in the schedule in each frame is determined. Slack distribution determines

the amount of slack to be allocated to a message and the resulting modulation level. For slack

distribution, we propose three heuristics which take different approaches towards smart slack

allocation amongst nodes in the network.

3.2.4 Dynamic Slack Determination

We define τs as the sensing period and R as the resolution required by the WSN application.

3.2.4.1 Slack Generation at a node:

Fig. 3.4 shows the comparison method at each node to identify whether a message is

redundant or relevant. During the initialization phase, the sensors sample the parameter of

interest and store this value as Relevant value. At each sensing period τs, a node wakes up

and samples the environmental parameter of interest. The current sensor reading is compared

with the stored Relevant value and if the difference between the two is less than the required

resolution R, then the node terms the current value as Redundant and discards it. If the

difference is greater than R, the current value becomes the new Relevant value. For the

periodic instance where the current sampled value was computed to be Redundant, the node

prepares only a header to be sent to the cluster head.

Header reception accomplishes two objectives. One is to notify the receiver that the trans-

mitter node is actively sensing data and successfully transmitting to the intended receiver.

Secondly, receipt of only a header is the notification that the sender node has a redundant

value to report. Thus a successful header transmission may not transmit any useful data but

it accomplishes the transfer of information that the sender node is alive, able to communicate

and has a redundant message to report. Upon reception of a header, the cluster head uses
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the last Relevant value reported by this child node for the purpose of aggregation. The radio

energy consumption by a node sending a header, Eheader can be calculated using Eq.(6).

The decision of redundancy or relevancy of a message depends upon R. Clearly, for a fine

grained measurement, value of R needs to be small and for a coarse grained measurement

this value can be large. Across different applications, value of R may differ, depending on

the required granularity of data collection. The value of R can be changed if in the same

application, a different level of sensitivity is required at a different point in time.

Cached Relevant 

Value, Rel
Current Reading , 

Curr 

YesNo

Redundant Message

Transmit only header 
Relevant Message

Cache Curr as Rel 

| Curr – Rel |  ≤  R

Header

Dynamic slack 

generated 

Slack Header Data

Figure 3.4: Dynamic slack generation at each node per sensing period

3.2.4.2 Slack identification by a peer node:

Now depending on the nature of the environment parameters and the resolution R, a

varying number of sensor nodes will have redundant messages. Since these nodes transmit

only a header, the time slot allotted for the message goes empty. The time left unused by a

node is termed as dynamic slack since it is generated at runtime. This dynamic slack can be

used by nodes in the same cluster which are scheduled later to scale down the modulation level

of their messages, henceforth called as peer nodes. The decision of redundancy or relevancy

of sampled data by a node need not be transmitted to peer nodes. In order to claim the

dynamic slack, the peer nodes listen to the shared channel. An idle channel will signify that

the predecessor node has finished sending a header. The peer nodes can then extend their

assigned time slots. We characterize the overhead of listening energy in section 5.
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3.2.5 Dynamic Slack Distribution

In order to optimize the energy savings, a decision needs to be taken regarding who should

be assigned the runtime slack as different nodes give varying amount of energy savings per unit

of time allotted to them. The decision of distribution of this extra slack cannot be done at the

centralized scheduler all the time. In order to minimize energy consumption, this distribution

of slack must be done in a distributed way.

At any instant in time, a subset of the nodes could have redundant message, we denote

this subset of nodes as N . Likewise, the subset of nodes having relevant message is denoted as

T . Also, each node expends some amount of energy in listening to the channel characterized

by Elisten. The total energy consumption of the network can then be formulated as

Enetwork =

N∑
i=1

Eiheader
+

T∑
i=1

Eimessage
+

T+N∑
i=1

Eilisten (3.7)

We illustrate a simple example to aid understanding and comparison amongst all the schemes

as described in later sections. Consider a simple network of 8 nodes as shown in Fig. 3.5 and

consider two periodic instances over which our observation is based. The values on the edges

represent the normalized distance between the corresponding nodes. In the energy-unaware

schedule, each node performs a periodic computation task of CC = 103 computation cycles and

periodic message transmission with packet size = 1024 bits. The values of different parameters

is specified in Section 5. The energy-aware schedule that makes use of predefined static slack

is shown in Fig. 3.6. The tasks and messages are at different modulation levels as decided

by the algorithm, GSS proposed in [23]. For the sake of clarity, we omit the computation

tasks. All nodes use the same channel for communication. Nodes communicating to the same

cluster head follow a serial schedule while nodes communicating to different cluster heads can

communicate in a parallel manner. The numbers on each time slot are the modulation levels

at which these messages are modulated. Fig. 3.5 enumerates a table of typical energy and

time values used in the examples. These values are obtained by using Eqs. 3.3-3.5 with values

specified in Section 3.2.9. In the base case the given schedule incurs a total energy consumption

of 10.88 mJ. Now consider 2 consecutive periodic instances of the schedule where nodes C and
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G have redundant message. In the GSS algorithm since schedule decisions are made offline by

a centralized scheduler and redundancy in sensing is not captured, the nodes C and G keep

transmitting their sampled data. The total energy consumption is 10.88*2 = 21.76 mJ
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Figure 3.5: Sample Energy Values and Data Aggregation Tree

of energy as shown in Fig. 3.6.

In this chapter, we address the problem of energy minimization through runtime slack gen-

eration and distribution. However, in order for an algorithm to optimally allocate the dynamic

slack generated at runtime amongst different messages, the algorithm needs an accurate global

knowledge of the amount of slack generated networkwide as input. Since the accurate knowl-

edge of future slack availability cannot be procured, an optimal online solution is not possible

to attain. Hence, in order to utilize the available slack in the best possible energy efficient

manner we present the following heuristic solutions. All the heuristic solutions follow the same

method for slack generation at a node as described in section 3.2.4.1. At each node, slack

generation requires one comparison between the current sensor value and the cached relevant

value and hence takes O(1) time. Modulation scaling can take O(k) time in the worst case

where k is the number of available modulation levels. The heuristics differ in their approach

towards slack distribution. The rest of the section explains the slack distribution approach of

the three heuristic algorithms namely: Basic, Weighted and Reshuffle, along with illustrative

examples, pseudo codes and worst case complexity analysis for each of the schemes.
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Figure 3.6: Baseline scheme,Energy Consumption = 21.76 mJ

3.2.5.1 Basic Scheme

This scheme implements a simple mechanism to utilize the dynamic slack generated. When

a node has a redundant message and decides not to transmit it, the time slot goes empty. This

empty slot can be fully claimed by the successor node if it can hear the predecessor node

finishing early. Thus the main idea of the Basic scheme is: The slack generated by a node is

utilized solely by its immediate successor node in the schedule.

However, the nodes are duty-cycled and wake up only at their assigned time slot. We assign

an additional wake-up time to each node called StartListen time when the node wakes up to

see if the predecessor node has finished early. During network initialization, the schedule is

constructed offline with the worst case assumption that all nodes will have a relevant message

to send. The start time of any node will be greater than or equal to the finish time of its

immediate peer predecessor node. Now at runtime, the predecessor node can either have a

redundant message or a relevant message. Thus each node stores two values: one is the finish

time of predecessor node when the predecessor node is relevant. This value will be known for

each node when the input schedule is supplied. Second value is the finish time of predecessor

node’s header when the predecessor node has a redundant message. This time is termed as

StartListen and can be calculated as, StartListen = scheduled start time of predecessor + header

transmission time of predecessor.

Please note that if a node has a redundant message, it transmits a fixed sized header at
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the highest modulation level. Thus irrespective of the modulation level assigned to a node,

if redundant, all nodes transmit a fixed sized header at the highest modulation. Thus each

node wakes up at StartListen to sense the channel. If the channel is busy it means that the

predecessor node has a relevant message and the node goes back to sleep to wake up at the time

assigned for it to start transmission. Else if the channel is idle, it means the predecessor node

has a redundant message and the node is free to reclaim this empty time slot thereby reducing

its modulation level and thus reducing the communication energy. The nodes individually

determine the best level for message modulation. At each node, redundancy determination

will take O(1) time and modulation scaling can take O(k) time in the worst case where k is the

number of available modulation levels. Since this happens serially in each cluster, the worst

case running time of the basic scheme can be estimated to be O(Nk) where N is the size of

the biggest cluster.

In the example discussed, node C and G on discovering that they have redundant messages,

schedule only a header for the consecutive instance as shown by shaded slot. Node D hears

node C finishing early and uses all the available slack to lower its modulation level as shown

Input: Energy Aware Schedule Si
Output: Energy Aware and Redundancy aware Schedule So
Q : Set of all leaf nodes vij in Si
while Q 6= NULL do

if vij has a redundant message then
vij schedules only header

end
if StartListen(vij+1) ≥ ft(vij) then

Dynamic slack available to vij+1

dynsl = st(vij+1) -
StartListen(vij+1)
Let s be the time difference between vij+1’s current modulation level and its next lower
modulation level.
while s ≤ dynsl do

Reduce modulation level of vij+1 by one level.
dynsl = dynsl - s
update s

end

end
Remove vi from Q.

end

Algorithm 3: Pseudo code for basic scheme

by highlighted slot. The total energy consumption in this case is 19.26 mJ of energy as

shown in Fig. 3.7. The pseudo code for Basic Scheme is shown below. In the rest of the chapter
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we denote scheduled start time of a node v as st(v), finish time as ft(v) and listen time as

StartListen(v).
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3.2.5.2 Weighted Sharing Scheme

The Basic scheme proposes full usage of available slack by the immediate successor node. In

a WSN with hundreds of nodes at different modulation levels, this scheme could be improved

upon by noticing the trend in the energy saving capabilities of different nodes. In [2], authors

investigate the nature of the energy-time trade-off curve. According to this curve, as shown

in Fig. 3.8 all step downs contribute differently to the energy minimization process. Since the

nature of the curve is convex and not linear, decreasing modulation level by equal amounts does

not always give equal energy gains. This means that two nodes with similar parameters like

node-cluster head distance, message size etc., but different modulation levels will give different

energy gains when scaled down by the same number of modulation levels. For example, a node

with a current modulation level of 8 when scaled to modulation level of 7 provides more energy

gain as compared to a node (with similar parameters) with current modulation level of 5 when

scaled to 4. This contribution can be effectively measured with the help of the energy gain

metric as proposed in [23].

EG(k, k − 1) =
Ek − Ek−1
t̂k−1 − t̂k

(3.8)
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where Ek and t̂k, respectively, denote the energy consumption and time incurred by the

node when operated at kth performance level. For each node ej , which is currently assigned the

kth performance level, EG(k, k-1 ) represents the energy reduction that would be obtained by

reducing its performance level to k-1 normalized with respect to the additional time incurred

for operating it at performance level k-1 instead of level k.

We use this metric to propose a scheme where peer nodes contend for the dynamic slack.

The node offering the highest energy gain, gets the maximum share of the slack. The main idea

of the Weighted sharing scheme is: Slack generated by a node could be distributed amongst a set

of successor nodes in a weighted manner such that the collective energy gain is higher. Again

this distribution needs to be done without the intervention of any centralized entity. When

a node wakes up at StartListen and realizes its predecessor node has a redundant message, it

calculates its share of the slack. The share of slack allotted to this node is proportional to its

current modulation level. A node vij decides its share of the slack as

share =
bself
btotal

∗ dynsl (3.9)

where, btotal is the sum of current modulation levels of vij and its peer successor nodes, bself
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is the current modulation level of vij and dynsl is the dynamic slack calculated by vij . It

decides the best modulation level to use this share of slack and the rest of the slack is left for

the successive nodes to use. Since share calculation can be done in O(1) time by each node, the
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worst case complexity of the weighted sharing scheme is the same as basic scheme. However,

the amount of slack cannot be precalculated as basic scheme. This calls for the nodes to wake

up more than once to listen for the possibility of available slack. In order to bound the listening

overhead, nodes perform strobed listening, meaning the nodes wake up multiple times starting

from StartListen to the start of their assigned time slot. Strobed listening presents a node with

the opportunity to capture slack being left for it to use while wasting lesser energy in listening.

Considering the example shown before, now the slack generated by C is used by both D

and E, in a weighted sharing manner. The energy consumption here is 19.05 mJ.

Input: Energy Aware Schedule Si
Output: Energy Aware and Redundancy aware Schedule So
Q : Set of all nodes vij in Si
while Q 6= NULL do

if vij has a redundant message then
vij schedules only header

end
If StartListen(vij+1) ≥ ft(vij)
Dynamic slack available to vij+1

dynsl = st(vij+1)- StartListen(vij+1)
vij+1 calculates share
Let s be the time difference between vij+1’s current modulation level and its next lower modulation
level.
while s ≤ share do

Reduce modulation level of vij+1 by one level.
share = share - s
update s

end
Remove vij from Q

end

Algorithm 4: Pseudo code for weighted sharing scheme

3.2.5.3 Reshuffle Scheme

The static allocation of time slots and exclusive sharing of the channel at the time of

initial schedule construction can become a bottleneck in making use of the dynamic slack due

to precedence constraints. Note that in Fig. 3.9 the slack generated by redundant node G

remains unused since node F is scheduled before G. Given that high spatial and temporal

correlation is inherent in sensor networks, the nodes in the area of redundancy can offer high

energy savings if they are positioned in the schedule such that they can use the slack at the

right time. Thus the main idea of the Reshuffle scheme is: If some nodes continuously have
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redundant messages, their position in the schedule can be rearranged such that their successive

peer nodes having relevant messages can utilize the slack generated by them.

This reshuffle is done in a locally centralized manner wherein a parent node makes decisions

for its child nodes. Each parent node (cluster head) observes the trend in the data trace of

each of its child node, for a pre-decided number of instants called an observation window.

Each parent node can generate a model based on the past behaviour of its child nodes. The

child nodes exhibiting redundancy majority of the time are selected to be at the beginning of

the schedule.

The model used in order to decide the redundancy trend followed here is based on a simple

majority rule. Each parent node keeps track of the number of times a child node exhibits

redundancy in the current observation window and then schedules them in the decreasing

order of redundancy count for the next window. The node exhibiting redundancy majority of

the time in the past window is expected to behave in the same manner and is scheduled first

in the next window.

The schedule reshuffle decisions are then broadcasted to the child nodes at the end of the

observation window. Additional time slots are allotted for the schedule updates. Let w denote

the size of the observation window. The complexity of linear prediction at the cluster head is

estimated as O(Nw2). This reshuffled schedule is followed for the next w instances and the

leaf nodes follow weighted sharing scheme for slack utilization. Thus the complexity of the

reshuffle algorithm can be estimated as O(Nw2 + Nwk).

Coming back to our example, note that if node B decides to reshuffle the positions of node

F and G, then slack left unused by G can be relocated such that it can be detected and utilized

by F . Energy consumption in this case drops to 17.38 mJ as shown in Fig. 3.10.

The overhead incurred by the reshuffle algorithm is directly proportional to the number of

times the schedule broadcast has to take place and hence inversely proportional to the size of

the observation window. Alternatively, if the network is exhibiting fast changing characteristics

and the window size is relatively large, it will not be able to capture the dynamic characteristic

of the network and will make a reshuffle decision that is not correct. This suboptimal schedule
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ends up causing more energy consumption. Thus calculating the size of the observation window

is crucial in balancing the overhead incurred. Let us consider a trace of s instances and calculate

overhead as a function of the window size. We formulate the total overhead as shown below,

Overhead = Energy wasted in broadcasting schedule + extra energy incurred due to a wrong

decision.

Overhead = (
s

w
).e + p.s.q (3.10)

where, s is the total number of instances, w is the window size, e is the energy consumption

per broadcast in the network, p is the probability of error in linear predictor estimating the

trend in changing network condition and q is the overhead encountered per wrong decision.

This q is calculated as the average difference between the energy consumption in case a correct

decision is made and the energy consumption when an imperfect decision is made.

Term e depends on the choice of parameters during the design of the network; in order to

find the values of p and q, the network needs to be observed for some initial instances.

Input: Energy Aware Schedule Si
Output: Energy Aware and Redundancy aware Schedule So
Observation Phase:
w = window size, ins = instance number
∀ parent nodes vi who have a leaf node vij
Q : Set of all child nodes vij
while ins ≤ w do

1 Node vi observes the finish time of vij
end
Enter Schedule Reshuffle Phase once every window
Use linear predictor to estimate the future values of each child node
Schedule Reshuffle Phase:
while Q 6= NULL do

1 find the node vij with highest redundancy count
2 Schedule it at the earliest time.

end
∀ leaf nodes vij
Follow Weighted Sharing Algorithm.

Algorithm 5: Pseudo code for reshuffle scheme

3.2.6 Enhanced Reshuffle Scheme

The reshuffle scheme makes decisions based on the redundancy count of the sensors in

the previous observation window. This can be improved by exploiting the fact that physical

environments frequently exhibit predictable stable states and strong attribute correlations that
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can assist us in inferring the state of a sensor from its past and its surroundings. For example,

outdoor temperatures typically follow consistent diurnal and seasonal patterns, and at any

moment in time, are unlikely to vary greatly within a local region [43].

Our proposed Reshuffle scheme can be enhanced by utilizing these diurnal/seasonal data

patterns to forecast the redundancy trend in future observation window. The data patterns

can be recognised using one of several algorithms proposed for data pattern discovery and

recognition in a time series [51]. At the end of every observation window, each parent node

uses its knowledge of the future pattern for each child node. Using this future pattern, the

parent node calculates the redundancy count which is the number of times this child node is

going to have a redundant message in the next window. The nodes are then scheduled in a

decreasing order of redundancy count.

Since sensor readings can always deviate from the modeled data pattern, Reshuffle En-

hanced can also make mistakes. The data patterns can be updated with any outlier data.

During the time that reshuffle decisions are broadcasted, the parent node can condition in the

outlier data into the existing model using algorithms presented in [43]. In our work, the local

node decides on the redundancy or relevancy of data and hence the bounded loss approxima-

tion guarantees are maintained irrespective of the scheme used and irrespective of the use of

data patterns or not. So if at the local node, a currently sampled value is relevant, it will be

scheduled by this node and the peer nodes will adjust their schedule online. Overhead in terms

of energy and time required for computation of reshuffled schedule is added to the calculations.

3.2.7 Clairvoyant Scheme

We compare the performance of the proposed heuristics with a Clairvoyant scheme. Since

an optimal online algorithm is not possible in practice, we emulate the Clairvoyant scheme like

an optimal online algorithm. The Clairvoyant scheme has knowledge about the future redun-

dancy trends beforehand and it makes the best decision possible with respect to rescheduling,

allocation of slack and assignment of modulation levels. From the pool of entities, it picks out

the entity which can give the highest energy gain for each additional unit of slack allotted to it.
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This happens iteratively till either the available slack finishes or the available entities cannot

be scaled down any further. Comparison with Clairvoyant scheme can offer more insight about

overheads with respect to wrong decisions made by the reshuffle scheme.

3.2.8 Performance Evaluation

We evaluate the performance of our proposed heuristics in order to quantify their energy

saving capabilities. For the purpose of comparison, we use the following two algorithms:

baseline algorithm (GSS) proposed in [23] and the Clairvoyant algorithm which would give

the optimal results given the complete knowledge of the future. We simulate all the schemes

using a custom C simulator. We use energy consumption of the schedule as a performance

metric in our simulation studies. The energy values are normalized with respect to the energy

consumption of an energy-unaware schedule.

3.2.9 Simulation model and parameters

For duty cycled data collection applications the wireless sensor network is generally orga-

nized in the form of a tree. For the purpose of evaluation, we generated a tree with 120 nodes

with each node having a random number of children between {0, 5}. The distances between

a parent and each of its child are randomly generated between {5, 10} following a uniform

distribution. The communication radius of the nodes is taken as 10 m. In order to access

the performance of our schemes, we varied the following parameters: percentage of nodes in

the network having a redundant message, the size of the observation window and listening

frequency assigned to nodes. For each simulation, we use the following parameters :

• Computation Subsystem: The CPU is assumed to be the Intel Xscale PXA27x CPU

which is used on widely available iMote-2 sensor node. Task Cycles = 1000, frequency

f can take values from the set f={624MHz, 520MHz, 416MHz, 312MHz, 208MHz,

104MHz} and the associated power consumption is P = {925mW , 747mW , 570mW ,

390mW , 279mW , 116mW} [38].
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• Communication Subsystem: Relevant data packet size = 1024 bits, redundant data

packet size = 144 bits, N0 = 4∗ 10−13 J , BER = 10−6, βi=75 nJ , βj= 100 nJ [52],

W= 1MHz. Modulation level b could range from b= {1,2,3,4,5,6,7,8,9,10}

• Overhead: All schemes expend listening energy, Elisten = 17.3 µ J [53] for each channel
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sample. Reshuffle schemes compute the schedule once per observation window. The

reschedule computation takes TaskReshuffle = 1000 cycles and the schedule broadcast

packet size = 168 bits.

In order to simulate a correlated network, we used the tool proposed in [54] to generate ran-

domly correlated data. The redundant or relevant character of the node is decided by the

resolution parameter R whose values are varied from 1% to 10%.

3.2.10 Simulation Results

Varying percentage of nodes with a redundant message: Fig. 3.11 shows the

performance of the schemes with varying percentage of nodes with redundant message. Energy

consumption reduces as the percentage of such nodes increases. Static slack is given as an input

to the algorithms. As the static slack increases, nodes get more opportunities to scale down the

modulation levels of their messages. We define slack factor (sf) as the ratio of static slack and

deadline. Fig. 3.11 shows the performance of the schemes at sf =0.1 and shows the normalized
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energy consumption values with 95% confidence intervals with an error bound of 5.306%. The

other parameters like observation window size and listening frequency are kept constant at 5

and 1 respectively. All the three schemes give better energy savings as compared to GSS. In

cases where the number of redundant nodes are less, Basic scheme leads to worse performance

than GSS owing to the channel listening cost. Reshuffle algorithm preforms slightly better
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Figure 3.12: Effect of listening frequency on energy consumption

than the Weighted Sharing scheme owing to the cost of schedule broadcast at the end of

every observation window. The Reshuffle scheme incurs as small as 33% and as large as 103%

more energy than the optimal Clairvoyant Scheme. With careful choices of the observation

window size, reshuffle algorithm is shown to be capable of saving up to 40% more energy than

the existing GSS scheme [23]. Energy saving directly translates into lifetime extension of the

sensors. According to the study conducted in [55], battery life of a Mica-2 mote sending 4

messages per second, at 100% duty cycle, using two AA batteries is 180 hours(∼ 1 week). In

general, duty cycle of the sensors is kept at less than 4%, and if messages are sent at the rate

of one message per second, the lifetime can approximately be calculated as 100 weeks. Given

that our proposed reshuffle scheme can save up to 40% more energy than the existing state

of the art scheme, the lifetime can be extended to approximately 140 weeks. Please note that

this calculation between energy savings and lifetime extension is approximate as it ignores the

energy overheads associated with protocol processing and sleep-wakeups.
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Figure 3.13: Effect of cluster size

Varying the listening frequency of a node: Fig. 3.12 shows the effect of varying

the listening frequency on the energy consumption of the network. In basic scheme, since

the amount of slack can be pre-calculated, there is no need for strobed listening. But in

weighted and reshuffle scheme, the frequency of channel sampling affects the energy saving

capability. If nodes sample channel more frequently, they will expend more energy in listening

but they will also have more opportunities for identifying available slack and utilizing it.

We varied the listening frequencies allocated to the nodes in order to evaluate the tradeoff

between the two. A frequency value of n means that node listens to the channel n times

between the StartListen time and the scheduled start time, with the channel listening starting

at StartListen. The performance is as shown in the Fig. 3.12. The evaluation was done on a

network that has 50% nodes having redundant message and slack factor at 0.05. In case of

basic scheme, the listening frequency is kept constant at 1. In weighted and reshuffle schemes

as the listening frequency goes higher the energy savings due to increased slack availability

becomes dominant as compared to the energy wasted in listening. This is because nodes now

have more opportunities to identify available slack. Thus, it is evident that the energy savings

achieved due to utilization of slack surpasses the energy overhead encountered in identification

of available slack.

Varying Cluster Size: Fig. 3.13 shows the effect of varying the cluster size. The sliding

window is chosen as 10 and 50% of nodes have redundant message. When each cluster is made
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up of only one parent node and one child node, then all the schemes behave exactly alike

because there is no peer node to reclaim the slack of a redundant node. The energy saving

is due to the suppression of redundant messages only. Also since there is only one child per

node, amount of energy expended in overheads is zero. However, this is a very uncommon

case because WSNs are rarely deployed in this manner. As the cluster size increases, there are

increased opportunities to reclaim slack and also increased overheads.
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Legend:       - - - - Basic,   - - o - - Weighted,   - - - - Reshuffle

- - - - Reshuffle Enhanced,    - - - - Clairvoyant,  - - - - GSS

Figure 3.14: Effect of observation window size for Data Pattern 1, 2, 3 and 4

In cases where the cluster size is large and the nodes with redundant message are at the

end of the schedule, Basic and Weighted are unable to make use of the slack. Reshuffle and

Reshuffle enhanced schemes achieve better energy savings due to relocation of slack to be
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utilized by nodes with relevant messages.

Varying Observation Window: In order to assess the effect of knowledge of repeating

data patterns, performance of the proposed schemes with respect to varying size of the obser-

vation window is as shown in Fig. 3.14. The simulations were performed for 1000 instances

in a network having 50% nodes having redundant message, with the listening frequency kept

constant at 1 and slack factor at 0.1. For testing performance of schemes in the presence of

data traces with repeating patterns, we used data sets similar to [56] where the data fluctuates

cyclically. The data sets are processed into square or rectangular pulses to show the redun-

dancy trends. Fig. 3.15 shows the data patterns (DPs) we use for our simulations. The DPs

show the varying redundancy-relevancy trend and not the actual values of sampled data. DP1

shows absence of any pattern in any node, with data values varying at every time instant. DP2

shows all the nodes following the same pattern. DP3 shows that 50% of the nodes follow a

redundancy trend and the other 50% have no repeating pattern. DP4 shows nodes observing

different types of repeating patterns.

1 time instant

DP 1: No repeating data pattern

DP 2: Exactly same  data pattern followed by all nodes

DP 3: Pattern followed by some nodes . Others are relevant everytime .

DP 4: Different repeating pattern followed by different nodes .

Figure 3.15: Data Patterns

Case 1: No Pattern

Sampling data pattern is shown in plot 1 of Fig. 3.15. Since the data does not follow any

pattern, the existence of redundant values is totally arbitrary. In such cases, a prediction

based scheme can be of no help. As shown in Fig. 3.14, Weighted behaves best among all the
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schemes. Reshuffle and Reshuffle Enhanced perform worse than Basic and Weighted owing

to overheads that surpass any random savings. Thus for applications where sensors record

consecutive uncorrelated activity without any repeating patterns, Weighted is the best scheme

for energy minimization.

Case 2: Same Pattern

Sampling data pattern shown in plot 2 of Fig. 3.15 shows all sensors showing exactly identical

repeating pattern. In such cases, all the schemes behave very similar as shown in Fig. 3.14b).

Since majority nodes are redundant majority of the time, the basic and weighted schemes attain

savings which is the same as what reshuffle and reshuffle enhanced attain with overheads.

Case 3: Mixed Pattern, Uncommon Cases

Plot 3 in Fig 3.15 shows a scenario where a portion of the nodes follow a repeating data pat-

tern and the rest of the nodes exhibit relevant values all the time thus showing absence of

any repeating pattern. Given that these are nodes in a cluster, this constitutes an uncommon

situation and can occur in cases when some nodes are faulty and hence show irregular behav-

ior. For small observation window sizes, Reshuffle Enhanced performs best in the presence of

overheads. But for larger window sizes, reshuffle perform best owing to the fact that it averages

the redundancy count over a large window size. Since some nodes do follow a pattern, over

large window sizes, these average approximations are much better than reshuffle enhanced or

weighted.

Case 4: Mixed Pattern, Common Cases

Nodes follow different repeating patterns. This pattern portrays common scenarios encountered

by WSNs for data collection applications. Nodes can be following varying data patterns owing

to different locations, differing characteristics of the attribute that they are sampling etc. We

see that in such cases, Reshuffle Enhanced is the best scheme. Except when the observation

window gets too big as compared to the repeating pattern where reshuffle performs better than

reshuffle enhanced.

Effect of Wireless Interference: In this section, we assess the impact wireless inter-

ference can have on our proposed schemes. We emphasize that even if slack reclamation is not
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feasible at all due to intense interference, energy could be still be saved by avoiding to transmit

repetitious sensor readings.

Impact of interference on slack determination: For slack determination, a node i listens

to the channel to determine if its peer predecessor node j is redundant or relevant. Notice

that i does not need to correctly receive the message and hence interference from simultaneous

transmissions do not impact the decision at i. If the signal strength is lower than a prede-

termined threshold, it is enough for i to decide that the predecessor node j is not actively

transmitting and the slack is available for i.
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transmission by 3?

- Does 3 interfere with the  
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- Does 4 interfere with the
transmission by 1?

Input Schedule

Possible scheduling checks to be made for  slack reclamation at runtime

Do 2 and 4 interfere 

with each other’s 
transmission ?

Possible Output  Schedules

Cluster 1 Cluster 2

Figure 3.16: Slack reclamation scenarios

Impact of interference on slack reclamation on each scheme: Fig. 3.16 shows an

example of an input schedule and cases that arise when this schedule is modified due to

runtime slack reclamation.

Basic: Given that all the available slack is reclaimed by only one successor node (Fig. 3.7), the

resulting modulation level and hence transmitter power can reduce significantly. The aggregate

interference can now impact successful transmissions more than before, negatively impacting

performance. This effect will be more pronounced when number of nodes with redundant

message are less. It can be avoided by conservatively predetermining the least modulation

level that can be attained while still meeting the threshold for successful receptions.

Weighted: Available slack is shared amongst successor nodes (Fig. 3.9), hence signal strength
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does not reduce drastically, thus avoiding the performance degradation similar to Basic.

Reshuffle and Reshuffle Enhanced: Both reshuffle schemes behave similarly to Weighted scheme,

with the modification that both the reshuffle schemes periodically reschedule the nodes in each

cluster, such that nodes with high number of redundant messages are placed at the beginning

of the schedule. The rescheduling is done locally by each cluster head and interference can be

avoided given that condition in Eq. 3.2 is followed by the topology. However, physical interfer-

ence modeling would restrict the reshuffling based entirely on the mostly redundant node first

metric. Under worst case scenario, they would behave either similar or slightly poorer than

Weighted scheme.

3.3 CSMA systems: Channel and load state aware CSMA/CA

3.3.1 Introduction

IEEE 802.15.4 has been widely adopted as a standard for the Wireless Medium Access

Control (MAC) and Physical Layer (PHY) specifications for Low-Rate Wireless Personal Area

Networks (WPANs) including WSNs. Carrier sense multiple access with collision avoidance

(CSMA/CA) mechanisms have been used for contention based medium access for WSNs be-

cause of their energy saving features. However, the absence of adaptation to varying channel

conditions leads to energy wastage due to retransmissions by nodes experiencing deep fading.

The readings of a sensor node that is deployed for the purpose of data monitoring and control

must reach the receiver by the intended deadline for real-time decision making. Each sensor

message is either transmitted to its destination before its deadline or is discarded. Higher

transmission rates lead to low transmission delays but also incur higher energy. Thus energy

consumption and delay have an inherent tradeoff.

Dynamic Modulation Scaling (DMS) has been studied as an effective rate adaptation

scheme for real-time networks [ [25]],[ [23]]. It trades off transmission energy with transmission

latency in networks employing wireless communications. We propose an adaptation of the slot-

ted CSMA/CA described in IEEE 802.15.4 combined with the Dynamic Modulation Scaling
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scheme for a soft real-time WSN. Depending on channel state and the load index at a node,

the best modulation level can be selected such that the energy consumption can be reduced

and the goodput of the system can be increased. Our adaptive CSMA/CA is implemented in

an entirely distributed manner. The runtime variations occur as a result of integrating the

channel and load state information at each node. We focus on the combined reduction in

energy consumption and transmission delay while considering the time varying channel and

the real-time nature of the messages. However considering that the two metrics have an in-

herent tradeoff, we propose an energy-delay metric which is a weighted linear combination of

the transmission energy and transmission delay. At times when the node is heavily loaded, the

metric selects the low delay option for faster data transmission. Alternatively, when the node

is lightly loaded, the metric selects low energy option to reduce energy consumption.

3.3.2 Related Work

The effect of fading in wireless channels is known to reduce goodput and increase the

amount of power wasted in retransmissions [57]. Channel-aware variable rate systems [18]

have been proposed to enhance throughput in wireless environments. But the focus has been

on reduced latency and increased throughput rather than energy consumption.

In CSMA/CA systems, several existing protocols use the contention window adaptation

method [16] and [17]. But in both the cases, the contention window optimization needs to be

done by a centralized coordinator incurring overheads. For the CSMA/CA systems, the absence

of channel adaptation and load adaptation results in energy wastage due to retransmissions

and low success rate. We propose an Adaptive-CSMA/CA protocol which accounts for varying

channel and load conditions at a node by influencing the selection of either low energy or low

delay transmission option.

In [58], a channel varying scheme is devised for a TDMA system, where messages are

postponed till the channel transitions into a good state. However, a waiting mechanism like

this is not suitable for real-time messages.

In order to improve the energy and delay efficiency of a network using contention based
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schemes, several protocols use the contention window adaptation method. In [16], authors

present separate optimal contention window sizes for energy optimized and delay optimized

scenarios. In [17], authors use the combination of queue and channel state information. But

in both the cases, the contention window optimization needs to be done by a centralized

coordinator incurring overheads.

DMS has been used for the energy efficient real-time scheduling of messages in [23] and [46]

etc. We propose the use of DMS for energy and delay efficient operation in the existing

IEEE 802.15.4 protocol. Thus, our work differs from the existing research as we consider the

combined effects of channel variation with the instantaneous load for the joint reduction of

energy consumption and delay of a soft real-time WSN in a distributed manner.

3.3.3 System Model

3.3.3.1 PHY Layer

We use the frequency flat Rayleigh fading channel to model the time varying fading wireless

channel between two devices. Each link is assumed to be constant during a packet transmission

and vary independently according to a Rayleigh distribution. In order to make the communi-

cation system energy aware, we use DMS [ [25]] which uses Quadrature Amplitude Modulation

(QAM) as the transmission scheme. Let k denote the number of bits per modulation con-

stellation symbol. The basic idea of DMS is to vary the number of bits per symbol while

keeping the symbol rate constant. For a packet of fixed size, this results in an energy-delay

pair for each modulation level. At higher modulation level, a packet can be transmitted at

higher energy than a message at lower modulation level. However, the transmission delay of

the message at higher modulation level is less than that of a lower modulated message. The

best modulation level can be chosen depending on whether the packet needs to be transmitted

in an energy-efficient manner or a delay-efficient manner. As we explain later, this tradeoff can

be leveraged by noticing that at times operating at higher modulation level is beneficial and

at other times the reverse could be more efficient. Table 4.1 specifies relevant symbols used in

the chapter.
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Table 3.1: Relevant Symbols

k Modulation Level

d Transmitter-Receiver distance

GR Antenna gain

λ Wavelength of the transmitted signal

AR Effective area of the antenna

SNR Signal to noise ratio

Rs Symbol rate

h Channel gain

W Channel bandwidth(Hz)

Pb Bit error probability

ECCA Energy consumption per channel sample

EACK Energy consumption per acknowledgement

In order to reliably transmit a packet from source to destination, the transmitted signal

power must be enough to combat the erroneous channel. We fix the bit error probability, Pb,

for reliable transmission as 10−6. Given the instantaneous channel gain, h and the Signal to

Noise ratio (SNR), the required bit error probability in case of QAM can be calculated as [36],

Pb ≥
4

k
·Q
(

3 · h2 · SNR
(2k − 1) ·Rs

) 1
2

(3.11)

where Q function is defined as, Q(z) =
r∞
z

1√
2π
e−y

2
dy

and k can take values from the set K = {2, 4, 6, 8, 10}.

Alternatively, by fixing Pb, we can find the minimum received SNR required for the signal

to be correctly demodulated at the receiver for each value of k as,

SNRmin = Q−1
(
k · Pb

4

)
· 2k − 1 ·Rs

3 · h2
(3.12)

From the received SNR, the transmitted power, Ptx, can be found as

Ptx ≥
SNRmin ·Ad ·N0

AR
(3.13)

AR =
GR · λ2

4 · π
(3.14)

where the effective area in which power radiates is given by

Ad = c · dα (3.15)
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where c is a constant and α takes values between 2 to 5. The transmitted power values Ptx

will be calculated for each k. Given that each transmitter has a limit on the maximum output

power value, Pmax, the values of k for which Ptx ≥ Pmax will be discarded. The corresponding

channel transmission rate in bits per second can be calculated as Wk. The time, t, taken for

transmitting an L-bit message in the wireless medium is calculated as L
Wk . The energy per

transmitted signal can be calculated as Ptx.t.

Thus the information about the current state of the channel decides the appropriate power

level for the transmitted signal and the possible modulation levels.

3.3.3.2 MAC Layer

The IEEE 802.15.4 MAC standard specifies a beacon enabled mode for the purpose of

channel state estimation. We consider the active part of the superframe to be made up of

beacon slot and Contention Access Period (CAP) slots only. For superframe structure, we set

beacon order, BO = 5 and superframe order, SO = 0, which gives a duty cycle of 3.25% and

the duration of the active part of the superframe as 15.36 ms. All other CSMA/CA parameters

are assumed to be the default values as defined in IEEE 802.15.4 standard.

IEEE 802.15.4 does not have any option for finding out the channel state, except from

the beacon transmission at the start of every superframe. The nodes in the cluster receiving

the beacon can calculate the Link Quality Indicator which can be used to find the channel

quality [57], [59]. The channel under consideration is a time variant channel. Considering

that the frequency of beacon transmission depends on the values of BO and SO which are

defined by the application, the beacon might not provide up to date information about the

channel quality. For such cases, we propose the inclusion of multiple beacon transmissions per

superframe depending on the coherence time of the channel.

Coherence time is a statistical measure of the time duration over which the channel impulse

response is essentially invariant [36]. The coherence time is inversely proportional to the

maximum doppler shift. To illustrate the wide variation in coherence time, consider two

sample application scenarios: a sensor network deployed for the data monitoring of an electrical
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transmission line [4] and one that is deployed for wildlife monitoring. In the transmission line

application, there could be vehicles moving at high speed (≈45km/hr) in the vicinity of the

transmission towers and hence the maximum doppler shift will be greater (typically of the order

of 100 Hz). In the case of wildlife monitoring, if we assume that the entities are moving at a

velocity of (≈4.5 km/hr), then the maximum doppler shift will be of the order of 10 Hz. The

coherence time can be calculated as 4.23 ms in the former case and 42.3 ms in the latter case.

Given the different time scales with which the channel might vary, a single beacon transmission

per superframe may lead to obsolete channel state information in the former case. Therefore,

in our scheme, we include multiple beacons in the active period of the superframe depending

on the application and the coherence time of the channel. The inclusion of extra beacon frames

leads to the added overhead in terms of extra energy consumption for the transmission and

reception and also adds to the delay. However, as shown by our simulations, this overhead is

shadowed by the energy saved due to channel aware transmissions.

3.3.4 Channel and load state aware CSMA/CA

With the advent of new sensor technologies, it is possible to integrate a large number of

sensors in one sensor node. We assume here that each node is equipped with a suite of sensors,

maximum being m. Given the application requirement, the sampling frequencies could be

predecided and may be different from one another. For example, while monitoring the electrical

overhead transmission lines, temperature variations on the transmission line happen at a much

smaller time scale than the variation in tilt of the transmission tower. Also sensors sample the

environmental parameters which tend to change gradually. For slow varying phenomenon, the

successive sensor readings might not differ from each other. In such scenarios, the repeating

sensor measurements can be discarded to avoid expenditure of communication energy. Thus

after each sampling the reading is compared with the previous reading. A close match results

in discarding the redundant message.

Each sensor message, i in the suite is characterized by the tuple {Gi, Di, Pi}, where Gi is

the generation time of the sensor message, Di is the deadline of the message and Pi is the



www.manaraa.com

79

period of the message. All the sensors in the suite sample periodically. At each period, the

sensor reading constitutes a message. If relevant, this message needs to be transmitted before

the deadline.
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Figure 3.17: Channel Contention amongst nodes

In contention based access protocols, the nodes start contending for a channel in the active

period of the superframe, if they have at least one backlogged message. During the contention

period, the message stays in the node buffer till either the node wins contention and transmits

the message. Else if the message is not transmitted by its deadline, the message is dropped.

Thus at any time in the sensor buffer there can be at most one message from each sensor stream

and in total there can be a maximum of m messages. The different scenarios are represented

in Fig. 3.17. During the contention period, the node might get more messages from other

sensors in its suite. Also varying deadlines means different sensors contribute differently to the

load with the contribution being inversely proportional to the period. Load index of a node is

calculated as,

LI =

m∑
i=1

WCTxi
Pi

(3.16)

where WCTxi is the worst-case transmission time of a message. The load index of a node is the

sum of the utilization demands of the messages in its buffer. After each message transmission,

the load index is reduced. In order to maximize this reduction, the message with the smallest

Pi must be picked for transmission.
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Consider a network of nodes contending for exclusive access to the channel. The method of

contention is the same as the slotted CSMA/CA described in IEEE 802.15.4 specifications [60].

Fig. 3.18 shows the sequence of steps followed by each node for the joint selection of message

and modulation. Each node follows these steps after winning contention and acquiring the

channel. Once a node wins contention, there are two choices to be made:

• which message should be picked for transmission, and

• what modulation level should be used to transmit this selected message.

With respect to the message selection, the node makes a greedy decision of selecting the

message with the least Pi, so that its load index can be reduced by the maximum amount (step

2). The channel state influences the required transmission power and hence the transmission

energy to meet bit error restriction (step 3). Given the power restrictions, it means selecting

which modulation levels are possible (step 4). Amongst the possible modulation levels, the

load index influences the selection of the best (step 8).

In order to select the best modulation level for transmission, we propose a novel metric

called the energy-delay metric, Mi as,

Mi = β · Ei + γ ·Di (3.17)

where Ei is the normalized transmission energy consumption and Di is the normalized

transmission delay, at modulation level i.

γ = LI, LI ≤ 1 (3.18)

β = 1− γ (3.19)

The modulation level i for which the metric Mi has the minimum value is the best modulation

level under the current channel and load conditions. Since the objective is the combined

reduction of energy and delay, the minimum value of the metric selects the best option. If the

node is heavily loaded, the modulation with the least transmission time (Di) is selected by
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1. Acquire Channel.

4. For all k є K,  if (Ptx ≤  Pmax), K’ = K’ U {k}.

5. The node now has (Energy, Delay) pair,  

(Ek, Dk) for all k є K’.

7. Calculate Metric, Mk =  β * Ek +  ϒ *Dk for all k є K’.

8. Select min {Mk}. The best modulation

level is k. 

6. Calculate Load Index (Eq. 3.16). 

2. Amongst the relevant messages, select min {Pi} as 

the message to  be transmitted. 

3. For this message, calculate Ptx (Eq. 3.13).

Initialize set, K = {2, 4, 6, 8, 10} and  K’ = Φ. 

Figure 3.18: Joint selection of message and modulation at a node

the metric. Alternatively, if node is lightly loaded, the modulation with the least transmission

energy (Ei) is selected. Thus, channel and load variations influence the selection of either low

energy or low delay transmission.

3.3.5 Performance Evaluation

Due to the unavailability of devices that implement DMS, we build a custom Java simula-

tor for performance evaluations. We perform extensive simulations to quantitatively assess the

performance of our scheme, Adaptive-CSMA/CA and the one used in IEEE 802.15.4, referred

to as CSMA/CA. For fair comparison, the transmission energy and transmission time of each

message in CSMA/CA is calculated with respect to the QAM scheme with k = 2. The per-

formance metrics of interest are normalized total energy consumption and success ratio. Total

energy consumption, Et is computed as,
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Et = (Ptx + n · Prx)tBeacon · i+ 2 · ECCA + (Ptx + Prx)tData + EACK + C (3.20)

where n is the number of nodes in the system and i (=3) is the number of beacon transmis-

sions per superframe for up-to-date channel state information, tBeacon and tdata are the beacon

and data transmission times respectively, Ptx and Prx are the transmission and reception power

per message respectively and C is the energy overhead for transmission and reception circuitry.

Success ratio is the ratio of successful transmissions to the total number of messages gener-

ated. Generally, unsuccessful transmissions could be either due to the transmission of message

while the channel is in a deep fade, collision with another packet or a deadline miss while

waiting in the node buffer. Considering that the wireless link is assumed to be constant during

a packet transmission and the packet transmission power is adapted to be enough to combat

the channel according to Eq. 3; and collisions are avoided by the CSMA/CA protocol, the loss

of a packet is only due to violation of its deadline due to the delay in its transmission. Lower

the transmission delay of a message, the faster the node will relinquish the channel and the

earlier it is available for another contending node. Thus, success ratio affects the transmission

delay.

3.3.5.1 Simulation Parameters

We consider a star topology with a Personal Area Network (PAN) coordinator and 10

nodes. This is because the other topology proposed by the standard, peer-to-peer topology,

suffers from beacon frame collisions when the beacon enabled mode is used [61]. The nodes

are at a distance of 50m from the PAN coordinator. The nodes being equidistant, removes the

effect of path loss so that the effect of fading can be studied. The values of other parameters

are as follows: Rs= 3Mbps, N0 = 4.11* 10−16, GR = 3.3dB, λ = .125m, Pb = 10−6, data

packet size, L = 1024B, beacon packet size, B = 200B, ECCA = 17.3µJ [53], tBeacon = 266µ

sec, Ptx and Prx for beacon = 80.5mW, WCTx = 1365 µsec. Ptx and Prx for data packets

are calculated depending on the channel gain. Each point on every plot is an average of 20

simulation runs. For a plot, the energy values are normalized with respect to the highest energy
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Figure 3.19: Effect of channel variation

consumed amongst the two schemes in that plot. We simulate diverse scenarios and our results

archive better energy savings and success ratios than the existing CSMA/CA scheme.

3.3.6 Effect of Channel

Fig. 3.19 compares the performance of Adaptive-CSMA/CA over CSMA/CA with respect

to energy consumption and success ratio. We use the threshold model used in [57] to gauge

the channel quality. Channel health rate is defined as the ratio of the number of times channel

was in good condition to the total number of times the channel was sampled for transmission.

For each node load is kept constant at 0.25 and percentage of redundant nodes is constant at

0%.

Since CSMA/CA never adapts to the varying channel, huge amount of energy is wasted

during retransmissions. Because of the added delay due to retransmissions, the messages

waiting in the buffer miss their deadlines, thus reducing the success ratio.

3.3.6.1 Effect of Number of Contenders

The number of contenders effect the contention delay experienced by nodes. With increas-

ing contention delay, the number of messages missing their deadlines increase which leads to
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Figure 3.20: Effect of variation in number of contenders

lower success ratios. Also, as contention delays increase, more messages are waiting in the

buffer, which increases the load indices of nodes. Greater load indices lead to nodes selecting

higher modulation levels, hence increasing the energy consumption. In both cases, as shown

in Fig. 3.20, Adaptive-CSMA/CA performs better than CSMA/CA.

3.3.6.2 Effect of Load

Fig. 3.21 shows the effect of load variation, where the performance is characterized with

delay-only and energy-only schemes too. For these two cases, the modulation level chosen is

always the one with the least transmission delay and the least transmission energy respectively.

The performance of these two schemes shows the influence of ignoring the effect of load index,

while the performance of CSMA/CA is due to the use of a single fixed modulation scheme. The

results reinforce the finding that metric based Adaptive-CSMA/CA strikes a balance between

low energy and low delay schemes. However, in cases of high load, Adaptive-CSMA/CA trades

off energy consumption for improvement in success ratio. At high load conditions, the metric

decides for higher modulation levels, thus improving the success ratio but expending more

energy,



www.manaraa.com

85

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Load

N
o
rm

a
li

ze
d
 E

n
er

g
y 

C
o
n

su
m

p
ti

o
n

Effect of Load on Energy Consumption

 

 

Adaptive-CSMA/CA

Delay-Only

Energy-Only

CSMA/CA

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Load

S
u
c
c
e
s
s
 R

a
ti

o

Effect of Load on Success Ratio

 

 

Adaptive-CSMA/CA

Delay-Only

Energy-Only

CSMA/CA

Figure 3.21: Effect of variation in load

3.3.6.3 Effect of Redundancy

Fig. 3.22 shows the effect of varying number of redundant nodes. As expected, energy

consumption reduces linearly as the number of relevant messages decrease. The success rate

shows similar increasing trend. In both cases, Adaptive-CSMA/CA performs better than

CSMA/CA.

3.4 Conclusions

In this chapter, we addressed resource management in nodes of a WSN by reclaiming unused

resources at runtime. We considered two MAC schemes namely, TDMA and CSMA/CA.

With respect to TDMA based systems, we showed that temporal correlation in sensor

data can be exploited in a lightweight manner to generate runtime slack which can then be

traded off to reduce energy consumption. We evaluated the performance of our schemes with

respect to several factors that can affect the energy consumption like percentage of nodes

having redundant message, listening frequency and observation window size. Our simulation

results show that the proposed schemes provide much better energy savings as compared to

the baseline algorithm [23]. With careful choices of the observation window size, reshuffle
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Figure 3.22: Effect of variation in sensing redundancy

algorithm is shown to be capable of saving up to 40% more energy, despite the extra overhead

incurred. Even the very simple basic scheme can have better performance than the baseline

scheme.

With respect to CSMA/CA based systems, we showed that adapting the transmission

strategy with respect to the instantaneous load and channel by dynamically changing the

transmission energy and rate through the use of DMS can lead to lower energy consumption

and higher success ratios. Our simulation results show that the proposed Adaptive-CSMA/CA

scheme results in significant improvement in energy consumption under varying channel con-

ditions and higher success ratio under varying load as compared to the CSMA/CA specified

in IEEE 802.15.4.
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CHAPTER 4 Wireless Network Design for Transmission Line

Monitoring in Smart Grid

4.1 Summary

In this chapter, we develop a real-time situational awareness framework for the electrical

transmission power grid using WSN. The low power, low data rate devices cause bandwidth and

latency bottlenecks. Our objective is to design a wireless network capable of real-time delivery

of physical measurements for ideal preventive or corrective control action. We observe that

existing research relies heavily on the assumption of a symmetrical underlying system. Instead,

we propose a generic formulation that addresses several real-world concerns and provide ways

to extend the formulation to address future deployments. We study a hybrid hierarchical

network architecture composed of a combination of wired, wireless and cellular technologies

that can guarantee low cost real-time data monitoring. For network design, we formulate an

optimization problem with the objective of minimizing the installation and operational costs

while satisfying the end-to-end latency and bandwidth constraints of the data flows.

4.2 Background

Currently, there is an impending need to equip the highly vulnerable, age old electric

power transmission line infrastructure with a high-performance data communication network

that supports future operational requirements like real-time monitoring and control necessary

for smart grid integration [62], [63]. Wireless sensor based monitoring of transmission lines

provides a solution for several of these concerns like real-time structural awareness, faster

fault localization, accurate fault diagnosis by identification and differentiation of electrical
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faults from the mechanical faults, cost reduction due to condition based maintenance rather

than periodic maintenance etc. The use of sensor networks has been proposed for several

applications like mechanical state processing [64], [65] and dynamic transmission line rating

applications [66].

To monitor the status of the power system in real-time, sensors are put in various compo-

nents in the power network [67], [68], [69]. These sensors are capable of taking fine-grained

measurements of a variety of physical or electrical parameters and generate a lot of informa-

tion. Network design is a critical aspect of sensor based transmission line monitoring due to

the large scale, vast terrain, uncommon topology and critical timing requirements.

The rest of this chapter is organized as follows. Section 4.3 explains the related work

followed by sensor network design in section 4.3. Section 4.3 presents evaluation studies and

Section 4.3 concludes the chapter.

4.3 Related Work

Managing the communication burden and resulting data latency is essential for efficient

analysis and fast control responses and calls for distribution of intelligence throughout the

infrastructure [62], [10]. Given the vast geographical expanse of the transmission line infras-

tructure, wireless networking presents a feasible and cost effective solution for transmission of

monitoring data [63]. Several works [19], [3], [4], [20], [21] and [22] propose to improve

the state of the art in transmission line monitoring by harnessing the power of wireless sensor

networks for real-time monitoring and control. In these works, the goal is to deploy multiple

different sensors in critical and vulnerable locations of the transmission line to sense mechanical

properties of its various components and transmit the sensed data through a suitable wireless

network to the control center. However, most of these works address this theme at a very high

level of abstraction. Small scale real world deployments of wireless sensors include tension

monitoring using load cells [70], power donut for conductor surface temperature monitoring

[71], sagometer [72] etc.

Authors of [4] and [20] were the first to propose a two level model specifically for support-
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ing the overhead transmission line monitoring applications. But considering the topological

constraints posed by the transmission lines, the low bandwidth, low data rate wireless nodes

would fail to transmit huge amount of data in a multihop manner. The hierarchical model pro-

posed in [19], offers a very expensive solution with the idea of deploying cellular transceivers

on every tower. While such a network can provide extremely low latency data transmission,

this model is highly cost inefficient as it incurs huge installation and subscription costs. The

only work that addresses the problem of finding optimal locations of cellular transceivers is

presented in [3].

In [3] authors develop a quadratic equation based solution for finding the optimal locations

of cellular transceivers aiming to minimize the delay in information delivery. We contrast this

work on the following grounds:

• The formulation presented in [3] relies heavily on symmetry. The underlying network

infrastructure and the cellular infrastructure is assumed to be symmetric and available at

all times. Further, it is assumed that all transmission towers are identical and transmit

the same amount of data. However, several factors bring in asymmetry as enumerated

below:

– Sparse cellular coverage (due to unavailability of cellular towers in the area) or

cellular outage.

– Variation in the amount of data transmitted by the towers in lieu of its location or

situation.

– Irregular terrain in certain regions of the transmission line might prevent the usage

of any wireless device forcing the use of only cellular network.

• The analysis presented in [3] considers minimizing delay as an objective. While cost

consideration is mentioned in the chapter, deployment and maintenance costs are not

used as factors restraining the number of cellular transceivers. In the absence of cost

constraints, the latency can be minimized by putting a cellular link on each tower which

can be highly cost inefficient.
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• The method presented in [3] utilizes a quadratic equation to find out the number of

cellular enabled towers required and subsequently the location of such towers. Roots

of quadratic equation are rounded off to depict the number of cellular enabled towers,

which must be an integer. This rounding off can lead to incorrect results. Also, the

factors such as latency and bandwidth which affect the placement of cellular transceivers

(referred to as representative node in [3]) in a group are not considered simultaneously,

rather bandwidth constraints are considered as an afterthought. This leads to suboptimal

results.

The task of designing a robust wireless data communication network involves consideration

of various factors such as latency, resiliency, security and bandwidth constraints. While low

cost wireless sensor nodes enable large scale deployment and minimal maintenance operation,

these low data rate wireless links can prove to be a bandwidth bottleneck when considering the

topology of the transmission line network. Transmission towers are deployed in a straight line

forming a linear network [19] spanning hundreds of miles. An intelligent choice of technologies

needs to be made such that the required bandwidth is provided for the intended data to reach

its destination in a timely manner.

Fig. 4.1 shows our proposed framework. It enumerates an array of challenges and con-

straints associated with monitoring a wide area network like transmission lines. Necessary

control or maintenance decisions can be taken once the sensor measurements are validated and

the physical structure is critically assessed for the presence of faults.

The linear network topology proves to be a major challenge for wireless network design

with respect to latency constraints and bandwidth constraints. Performance evaluation of the

linear network model [73] shows that successful delivery ratio of the packets from the nodes

far away from the substation is found to be much less than that of nodes near the substation

because packets from a farther node have to travel a longer distance and the rate of collision

is higher. The effective monitoring of a large transmission line network requires a hybrid

communication infrastructure.

This hybrid infrastructure can be a combination of wired (copper cable/optical fiber) and
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Figure 4.1: Sensor Network Design Framework

wireless (cellular/IEEE 802.15.4) standards to enhance the capability of the overall network

to meet newer requirements based on emerging smart grid applications.

In this chapter, we formulate a hybrid hierarchical network design problem that can provide

cost effective data transmission while at the same time respecting the bandwidth, delay and

connectivity constraints. We formulate a placement problem to optimize the number and

location of the cellular enabled towers to significantly reduce the operational and installation

costs while respecting all the constraints.

4.4 Three Level Hierarchical Network

We propose a hierarchical three level wireless network model for time critical applications.

Each level is equipped with an array of sensors and transceivers with varied capabilities such

that together they achieve the required behavior. The design involves the installation of a

private WSN of low cost, low data rate links, utilization of the existing SCADA network, and

a wide area network such as cellular network comprised of expensive but high data rate links.

The proposed network makes use of the existing SCADA links (optical fiber) for communication

between substations and control center and strategically utilizes the existing cellular network

for data transmission from certain transmission towers directly to the control center. A set of
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wireless sensors on each tower is installed as part of the private WSN.

depicts a power transmission corridor with a number of transmission towers, two substations

one at each end of the transmission line and a control center. Each level of the network forms a

cluster supporting many to one communication from all the nodes in the cluster to the cluster

head.

The first level of the network is responsible for collecting information about the tower. It

is composed of sensor nodes installed in each transmission structure forming a Sensor Array

in Tower (SAT ). This SAT consists of an array of sensor modules such as tension sensors,

accelerometers, temperature sensors, tilt sensors, motion sensors, vision-based sensors, and

infrared sensors etc. similar to [3], [4]. Each tower is equipped with a more sophisticated

relay node with enhanced computation and communication capabilities. Data from each sensor

in the SAT is transmitted to the relay node. The relay node is responsible for compressing

the data received from the SAT and transmitting it to the higher level.
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The second level of the network is responsible for transmission of data from towers that are

far away from the substations. Consider a segment composed of a few towers in the middle of

the transmission line network. Data from these towers cannot reach either of the substations

due to limited bandwidth of the intermediate wireless links. In such cases, enabling one of

these towers with cellular capability can provide a feasible solution as shown in Fig. 4.2. It is

to be noted that it is not required to enable all towers with cellular technology as proposed

in [19]. The second level is thus composed of segments of such towers transmitting their
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aggregated information to the cellular enabled transmission tower which acts as the head of

their segment. The cellular enabled tower is a transmission tower equipped with an additional

cellular transceiver along with the relay node. This cellular transceiver offers an alternative

way to deliver the tower’s data directly to the control center through a high bandwidth, low

latency cellular network.

The third level of the hierarchical network is composed of a single cluster consisting of two

substations and the cellular towers. The control center acts as the cluster head. Thus, level 1

operates at each tower, level 2 operates at the granularity of a group of towers. The size of the

group will be dictated by the wireless link bandwidth and the required end to end latency. Level

3 operates at the level of the whole network where substations and cellular towers transmit to

the control center. Table I summarizes the characteristics of various communication standards

used in this chapter.

4.4.1 Placement Problem Formulation

In order to provide cost optimized operation in delay constrained and bandwidth con-

strained linear networks, the strategic placement of cellular transceivers becomes very crucial.

While the cellular transceivers provide low latency high bandwidth links, they are costly to

install and the subscription charges can dominate the operational cost of the network. On the

other hand, the wireless Zigbee devices are relatively inexpensive but provide very low data

rates. Thus, there is a tradeoff between cost and delay. In this section, we first explain our

network model and state the placement problem. Next, we formulate a mathematical program

to find the optimal location of the cellular enabled towers.

4.4.1.1 Network Model

In this chapter, the transmission line is modeled as a directed graph, G = (V , E) as shown

in Fig. 4.3. V represents the set of vertices and E represents the set of edges in G. The set of

vertices consists of N transmission towers, two substations (SS) at the ends of the transmission

line and a control center (CC). Thus, the total number of vertices in the graph is equal to
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Table 4.1: Types of technologies and their characteristics

Properties Optical Fiber Cellular (3GPP LTE) Wireless (IEEE 802.15.4)

Type of Link in the Substations to Control Transmission towers to Between towers (k, l)or

Network Center (SS, CC) cellular towers (k, CC) tower and substation (k, SS)

Bandwidth 10 Gbps Uplink 75 Mbps, 250 kbps

Downlink 100 Mbps

Delay ≈ 1 µsec ≈ 50 msec ≈ 16 msec

Transmission Range As long as the fiber 100m- 10 km+ 10m - 1.5km

Installation Cost 0 (already exist) ≈ 25x-50x ≈ 1x

Operational Cost ≈ 1x ≈ 5x-20x ≈ 2x

Channel Contention No No Yes

Subscription Fee No Yes No

The numerical values presented for installation cost are relative to that of ZigBee and for

operational cost are relative to that of Optical fiber.

N+3. Edge set E in G represents the set of communication links which can be wired (SS,

CC), cellular (k, CC) or wireless (k, l), where k, l ∈ N . Each link (i, j) in the graph can be

described by a tuple (cij , Bij), where cij is the operational cost incurred by the link and Bij

is the total bandwidth of the link. Given that each transmission tower needs to transmit its

monitoring data to the control center, there are N flows in this network with each one having a

common destination, CC and common delay constraint, D. Each flow can be characterized by

the tuple: F = (Source, Destination, b, D) where, Source ∈ N is the source node of the flow,

Destination = CC is the destination node of the flow, b is the flow bandwidth requirement,

and D is the delay constraint to be satisfied by the flow. lijk is latency incurred by the kth flow

on the link (i, j). The latency incurred is the sum of transmission delay and channel access

latency.

4.4.1.2 Placement Problem Statement

Given a directed graph G = (V , E) and a set of N flows, find a feasible path for each

flow such that the sum of the cost of all the paths is minimized while respecting the delay and

bandwidth constraints of each flow. If the minimum cost path chosen by a tower node k∈ N

includes the edge (k, CC), then a cellular transceiver should be placed on the tower k.
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4.4.2 Placement Problem Formulation

The input to the algorithm is the transmission line consisting of N transmission towers

and the end to end latency constraint, D. The formulation uses the binary variables Si,j , Yi

and Xi,j,k. Si,j is 1 if link (i, j) is used by at least one flow, showing that operational costs

(cij) are incurred irrespective of if the link is fully utilized or is underutilized. IC denotes the

installation cost of a cellular transceiver on a tower, i. Yi is 1 only if link (i, CC) is used by

any flow which means that a cellular transceiver must be installed on node i. Xi,j,k represents

the choice made for the link (i, j) by the node k. If node k selects edge (i, j) as one of the link

in its path, then Xi,j,k is equal to 1 otherwise Xi,j,k is equal to 0. All the decision variables are

binary variables and hence the formulation is an Integer Linear Program (ILP). We used the

ILOG CPLEX 12.2 software [34] to solve the ILP. Table II enumerates the different symbols

used in the formulation and their meanings. The placement problem can thus be formulated

as,

Minimize:

f(Si,j , Yi) = τ
∑

(i,j)∈E

cijSi,j +
N∑
i=1

IC · Yi (4.1)

Subject to:

∑
(i,j)∈E

li,j,kXi,j,k ≤ D ∀k ∈ N (4.2)

−
∑

(i,j)∈E

Xi,j,i = −1 ∀i ∈ N (4.3)

N∑
k=1

V \CC∑
i=1

Xi,CC,k = N (4.4)

∑
(j,i)∈E

Xj,i,k −
∑

(i,j)∈E

Xi,j,k = 0 ∀k, i ∈ N, i 6= k (4.5)
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Xi,j,k −Xj,CC,k = 0 ∀j ∈ SS,∀k ∈ N (4.6)

∑
k∈N

bkXi,j,k ≤ Bi,j ∀(i, j) ∈ E (4.7)

Xi,CC,k − Yi ≤ 0 ∀i, k ∈ N (4.8)

Xi,j,k − Si,j ≤ 0 ∀(i, j) ∈ E,∀k ∈ N (4.9)

Xi,j,k, Yi, Si,j ∈ {0, 1} ∀i, j, k (4.10)

Table 4.2: Symbols used in Placement Problem Formulation

Symbol Representation

D End-to-end deadline

lijk Latency incurred by the kth flow on link (i, j)

Bij Total bandwidth of the link (i, j)

bk Flow bandwidth for node k

cij Operational cost incurred by link (i, j)

IC Installation cost per cellular transceiver

Si,j Binary Variable. Is 1 if link(i, j) is used by any flow.

Indicates presence of a flow on link (i, j).

Yi Binary Variable. Is 1 if tower i is cellular enabled.

Indicates presence of a cellular transceiver on tower i.

Xi,j,k Binary Variable. Is 1 if node k selects edge (i, j) as a link.

Indicates presence of kth flow on link (i, j).

Our objective is to minimize the cost function given in Eq. 4.1. Our cost model consists of

two types of costs: installation cost and operation cost. Installation cost is a one-time cost of

installing cellular transceivers on selected towers. Operation cost is composed of subscription

cost and maintenance cost and is recurring in nature. Wireless and SCADA links are assumed

to be owned by the transmission company and hence their operational cost is mainly made up

of recurring maintenance costs. Cellular links utilize cellular service provided by a third party.
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Hence the operational costs for cellular links are made up of a recurring subscription cost to be

paid to the third party and maintenance cost. As shown in Eq. 4.1, the total cost is the sum of

operational cost of all the paths used for data transmission over the operational period τ and

one time cost for installing cellular transceivers on selected towers. Eq. 4.2 restricts the end-to-

end latency of every flow to less than or equal to the maximum permissible end-to-end deadline,

D. Our proposed formulation is capable of addressing multiple latency requirements. Firstly,

consider cases where multiple latency requirements are imposed throughout the operational

period. In such cases, the constant deadline D in Eq. 4.2, can be modified to flow specific

deadline, Dk. Secondly, consider cases where multiple latency requirements are imposed for

only a fraction of the operation time. In such cases, a proactive planning approach can be

adopted and resources can be reserved for use during emergency situations demanding higher

data rate and lower latency data transfer. Specifically, contingency flows i.e. flows to deal with

traffic contingencies can be created during the planning stage, thereby modifying the total

number of flows from N to N
′
. The resources reserved for these contingency flows are utilized

during emergency situations.

The latency calculations take into account the transmission latency as well as channel access

latency experienced by a flow on each link. In order to address fine grained latency calculations,

queuing delay can also be taken into consideration, given that sensor measurements may be

buffered at one or multiple nodes before transmission. The queuing delay component can be

linearly added to the latency component li,j,k along with transmission latency and channel

access latency. Every flow will utilize a set of wireless links and exactly one cellular or SCADA

link of type (i, CC) where i ∈ N ∪ { SS1, SS2 }. On each link, multiple flows can be

multiplexed as dictated by the total link bandwidth. The transmission latency of a flow on

each link is calculated considering the presence of other flows multiplexed on the same link.

The constraints in Eqs. 4.3-4.6 explain the flow conservation constraints and ensure that

exactly one path is selected for a flow generated at node k ∈ N . Eq. 4.3 restricts each tower

to be a source of exactly one flow. Eq. 4.4 depicts that CC serves as destination to exactly

N flows. Eq. 4.5 and 4.6 ensure flow conservation at each tower and substation respectively,
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between the source and destination. Bandwidth of a link (i, j), is denoted by Bij denoting

available link specific bandwidth taking into consideration interference on neighboring links.

This bandwidth is assumed to be constant over time. We agree that available bandwidth could

change due to varying interference levels. However, the proposed method is an offline planning

approach and addressing time varying interference is out of the scope of our work. Eq. 4.7

explains that the total flow on each link must not exceed the available link bandwidth. Eq.

4.8 ensures that whenever any link of type (k, CC) is used by any flow, a cellular transceiver

will be placed on the tower k ensuing some installation cost. Eq. 4.9 ensures that cost of link

(i, j) is counted at most once for the set of k flows that are multiplexed on this link. The last

constraint, Eq. 4.10 ensures that the decision variables are binary variables.

Upon interpretation of the output, the location of cellular enabled towers can be found by

the value of the decision variable, Yi. If it is equal to 1, it means that a cellular transceiver

needs to be installed on node i.

The operational cost of links of type (SS, CC) is given a minimal value followed by wireless

links (k, l) where k, l ∈ N . The operational cost of cellular links (k, CC) are given highest

values modeling the high cellular subscription charges. The installation cost for (SS, CC) is

set to zero, thus modeling the already present SCADA links and a constant installation cost

can be added to the final output to model the fixed installation cost of SAT on each tower.

Installation cost of cellular transceivers is added in the objective function. The edges of type

(SS, CC) have the least latency amongst all the edges, followed by the cellular links (k, CC),

followed by the Zigbee links (k, l) which have the highest latency.

4.4.3 Link Utilization based costs

In our proposed formulation, we assume a fixed periodic subscription cost being charged

for each active cellular link. This model could be generalized to represent subscription costs

proportional to the link utilization. The existing formulation can be easily modified to address

the variable cost structure. Consider the modified objective function as shown below:

f(Si,j , Yi, Xi,j,k) =
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τ
∑

(i∈N,j 6=CC)

cijSi,j + τ
∑

i∈N,j=CC
(cij

∑
k∈N

bkXi,j,k

Bi,j
) +

N∑
i=1

IC · Yi (4.11)

Eq. 4.11 computes the total cost as the sum of fixed operational costs for wireless and

SCADA links, sum of link utilization dependent operational costs for cellular links and the

sum of installation costs. Notice that a fixed operational cost is assumed for wireless and

SCADA links, because irrespective of the link selected for sensor data transmission, these links

are operational for other requirements such as data transmission among the sensors in the

SAT . Nonetheless, the formulation can easily be modified if the operational costs for all the

links need to be made utilization dependent. We analyse the impact of link utilization based

costs in section IV F.

4.5 Link reliability

In the proposed formulation presented before, we assume perfect wireless link conditions.

However, in reality, wireless links can be unreliable due to wireless interference, channel loss,

multi path fading etc. [36]. In the following, we present a method to extend our existing

formulation to address link unreliability.

Let Rel denote path reliability that can be specified as part of input requirements. This

means that each flow must reach the control center, CC with probability Rel. The path relia-

bility Rel is related to the constituent link reliabilities. Consider a link l with link reliability,

ρl. For a path with n links, the reliability of the path can be calculated as ρnl . Thus, for every

flow the condition ρnl ≥ Rel must be satisfied. Given link reliability and path reliability, n can

be found offline as the highest integer satisfying ρnl ≥ Rel. This n represents the maximum

number of links that a flow can traverse, in order to satisfy path reliability constraint. Thus,

wireless link reliabilities can be easily addressed by our existing formulation with the addition

of the following constraint,

∑
(i,j)∈E

Xi,j,k ≤ n, ∀k ∈ N (4.12)
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Eq. 4.12 ensures that the total number of links traversed by each flow, k must be less than or

equal to n.

Link specific reliabilities can also addressed in our proposed formulation. However, it

introduces a quadratic constraint modifying the linear optimization program to a quadratically

constrained program. Specifically, consider that the link reliability of link (i, j) is denoted as

ρij . Then the Eq. 4.12 shown above will change to

∏
(i,j)∈E

ρijXi,j,k ≥ Rel, ∀k ∈ N (4.13)

As evident, addressing link specific reliabilities results in a quadratically constrained opti-

mization problem which is much harder to solve. Thus, link specific reliability can be addressed

at the cost of higher complexity.

4.5.1 Constrained Cellular Coverage

In the previous section, we assumed that the transmission line considered is uniformly

covered by a cellular communication network. This means that cellular transceivers can be

placed on any tower. However, owing to the diverse geographical terrains traversed by the long

transmission lines, there might be remote areas where cellular coverage is not available. Or

there could be prolonged outage on certain cellular towers. In such cases, there are additional

constraints on the placement of cellular transceivers. We call this version of the problem as

Coverage Constrained placement problem where relay nodes can only be installed on a subset

of the transmission towers which are covered by cellular service.

The Coverage Constrained placement problem formulation requires little modification from

our original placement problem formulation. Let V
′

denote the set of nodes not covered by

the cellular service. The constrained edge set, E
′

will be E – {(k, CC), ∀ k ∈ V ′}. In order to

model the Coverage Constrained placement problem, the input graph G needs to be replaced by

G
′
(V , E

′
). Fig. 4.4 shows the example where towers 3 and 4 do not have any cellular coverage.

The edges (3, CC) and (4, CC) are thus removed. In the formulation, the corresponding

binary variables, Y3 and Y4 are removed to represent cellular unavailability at these towers.
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Thus, with a simple modification in the formulation, restricted cellular availability can be

easily addressed.

If there is a large segment of towers devoid of cellular coverage, then the responsibility of

data delivery falls upon wireless Zigbee links. In such cases, the data delivery might not be

able to meet the latency constraints given the limited capacity of wireless Zigbee links. Such

cases can be easily identified though our proposed method as shown in Fig. 4.10.

4.5.2 Asymmetric Data Generation

The method proposed in [3] relies heavily on symmetry and hence cannot accommodate

asymmetric flow bandwidth requirement in the network. There can be several scenarios leading

to towers generating sensor data at different rates. This can be due to a requirement of fine

grained sensor measurement in order to attain better situational awareness of a particular

tower located in a sensitive area. Fig. 4.5 shows such a scenario. Our proposed formulation

can easily accommodate such asymmetric requirements. This is because each flow bk generated

at a tower k is individually formulated. Asymmetric data generation will change the values of

bk and lijk in Eqs. 4.2 and 4.7. Hence the formulation solves both symmetric and asymmetric

cases equally the only difference being in the input file specifying the flow requirements.

4.5.3 Incremental Deployment

With changing data traffic requirements and geographical expansion of the transmission

line, the possibility of incremental deployments is always present. If at each such future

requirement, an entirely new input is given to the optimization formulation without taking

into account the currently existing cellular enabled towers, the solution may be a costlier

deployment. We term this method as memoryless deployment because it discards any memory

of existing cellular enabled towers. This method can result in installation on an entirely new

set of towers, thus risking loss of any investment made in installing existing cellular

transceivers in the first place.

We present a method to add new cellular links on top of existing network to satisfy newer
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requirements while minimizing installation costs. In order to do so, only the input to the

optimization program needs to be modified. The installation costs for currently deployed

towers is made equal to 0 and flow requirements are increased as per new specifications leading

to modified latency calculations. Since the installation costs of currently deployed towers is

now 0, they will be automatically considered as cellular enabled towers in the optimized answer.

The optimization formulation will make as much use of such existing cellular enabled towers as

possible in minimizing total costs. Thus, incremental deployment reuses the existing cellular

enabled transceivers as much as possible.

4.6 Performance Evaluation

We consider a transmission line network with 75 towers with an average span length of 800

ft [74]. In order to reflect real-world scenarios, the bandwidth of the optical fiber links (SS,

CC) is taken as 10 Gbps. Bandwidth of the cellular links is taken as 75 Mbps and latency

incurred in the cellular link due to state transition delay, access delay, and handover etc. is

taken as 50 ms [75]. The bandwidth of the IEEE 802.15.4 wireless links is 250 kbps and

latency incurred due to these links is 16 ms [76]. The length of the data packet generated by

each tower is 32 kbits [19]. The performance metric of interest is the total cost of the network

including the installation and operational costs. We consider three pricing schemes named C1,

C2 and C3 and analyse the effect of different costs associated with each type of link present
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in our network. They vary in their ratio of operational costs attached to each type of link. A

pricing scheme can be described as a ratio of operational costs of optical fiber to cellular to

Zigbee. Thus, a scheme (1:10:2) would mean that operational cost of the three types of links:

optical fiber, cellular and Zigbee are in the ratio 1:10:2.

We study several different scenarios including variation in flow bandwidth, end to end

deadline and network size. We compare the results of our proposed formulation called Integer

Linear Program (ILP) with the method proposed in [3] referred here as the Quadratic Equation

method (QE). We also evaluate the cost of the network in cases of constrained cellular coverage

and incremental deployment.

The proposed formulation provides an optimal solution to the wireless network design

problem at the granularity of a transmission corridor as shown in Fig. 4.3. This solution

can be independently computed for each corridor. While computationally expensive, these

calculations are required to be done only during the offline centralized network planning stage.

Thus, the fact that an ILP formulation is expensive to compute is mitigated by the small

number of times such an optimization needs to be performed. However, for cases where the

transmission corridor comprises of several hundreds of transmission towers, heuristic methods

may be better suited. This is because even though they compromise on the accuracy of the

result, they are capable of providing a solution with much less computing resource requirements.

Although the ILP model is harder to scale and computationally-intensive, it is helpful in

determining a lower bound on the costs. We use the ILOG CPLEX 12.2 software c̃iteCplex to

solve the proposed Integer Linear Program (ILP). The complexity of the ILP can be estimated

by the size of the input problem. For a 75 node network, there were 2600 binary variables and

2100 constraints. The simulations were run on Intel(R) Xeon(R) X5650@ 2.67GHz machines.

The simulations took a minimum of 0.16 seconds and a maximum time of 4.25 hours.

4.6.1 Effect of variation in Flow Bandwidth

Fig. 4.6 shows the effect of the amount of data generated by each tower and its effect on the

feasible operation of the transmission line. In this simulation, we consider a 75 node network
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Figure 4.6: ILP: Effect of variation in flow
bandwidth

20 40 60 80 100 120 140 160 180 200
500

1000

1500

2000

2500

3000

Flow Bandwidth (kbps)

C
o

s
t 

C
1
(1

:1
0

:2
)

 

 

ILP

QE [12]

Figure 4.7: Comparing ILP and QE [3] with
respect to varying flow bandwidth

with a deadline constraint of 3 sec. The packet size of the sensor data generated at each

tower is the same. Given constant bandwidth of the wireless links, only a certain number of

flows can be multiplexed on any link. Thus smaller the flow bandwidth requirement, more flows

can be multiplexed on each link. Given a large deadline requirement, this results in reducing

the number of cellular links to be used and hence the cost. The performance graph echoes this

observation. Notice in the graph that for values of flow bandwidth greater than or equal to

128 kbps (specifically 128 kbps, 160 kbps and 192 kbps), the cost becomes constant. This is

because given the wireless link bandwidth of 250 kbps, at most one flow can be multiplexed

on each link. Thus the network design remains same for each of these three flow bandwidth

requirements. Also in cases where, flow bandwidth is greater than wireless link bandwidth,

then the remaining options are either deploying an all cellular or all wired solution.

Fig. 4.7 compares the results given by our proposed algorithm, ILP and the proposed

method (QE) in [3] with respect to variation in flow bandwidth. As mentioned earlier, the QE

method [3] utilizes a quadratic equation to obtain the number of cellular enabled towers. Roots

of quadratic equation are rounded off to the nearest integer to depict the number of cellular

enabled towers which must be an integer. This rounding off leads to incorrect results as can be

seen in the plotted curves. Once flow bandwidth is greater than 128 kbps, the results should
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Figure 4.8: ILP: Effect of variation in end to
end flow latency
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be the same for the three cases (128 kbps, 160 kbps and 192 kbps) as explained previously.

However, the QE method tends to give incorrect results owing to errors encountered due to

rounding of roots. Similarly for flow bandwidths of 84 kbps and 96 kbps, the cost incurred

by QE method is less, but that is because number of towers selected by the QE method are

insufficient leading to constraint violation.

4.6.2 Effect of variation in Flow Latency

Fig. 4.8 shows the effect of variation in end to end flow latency with respect to cost. We

consider the time scale of one SCADA cycle which is 4-8 sec [4]. The results show that in cases

of very stringent deadline requirement (≈ 0.1s), a cellular transceiver should be installed on

each tower. Thus every tower uses the cellular link to avoid any deadline miss hence ensuing

a huge cost. In the given 50 node network, for relatively relaxed deadline requirements(≈ 2-4

sec) the lowest cost is attained by fully utilizing the wireless network. At the time scale(≥ 3

sec) the cost becomes constant because now the system is more bandwidth limited than latency

limited.
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4.6.3 Effect of Network Size

Fig. 4.9 shows the effect of variation in the number of transmission towers with respect to

the cost. Given the linear structure of the transmission line, the cost increases approximately

linearly with respect to the number of towers in the network. We assume all towers generate
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64 kbits of data per monitoring cycle [19] and the end to end deadline is 8 sec. We compare

the results of ILP with two data generation rates in QE one at 8kBytes per second and one

at 16kBytes per 2 seconds both being equivalent to 64kbps. The QE solution results in higher

cost for the case of 16kBytes per 2 seconds. For any given network, this graph can be used to

find the most cost effective solution by plotting the various pricing curves.

4.6.4 Effect of variation in Cellular Coverage

Fig. 4.10 shows the effect of variation in cellular coverage and its effect on the installation

and operational cost of the network. We consider a 100 node network with constant flow

bandwidth of 64kbps and a deadline of 8 sec. We vary the percentage of nodes which can be

devoid of any cellular coverage from 10% to 50% of the network size. Further, we vary the

length of the segment of the transmission line devoid of any cellular coverage from 0.25 mile

to 1 mile. This is done to mirror real world situation where it is more likely that adjacent
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towers are devoid of cellular coverage rather than random single towers. For comparison, the

results of cellular constrained scenarios are compared with the symmetric case where coverage

is available throughout the network. In cases where a large number of towers are devoid of

cellular coverage, there might not be any feasible solution as shown in the figure. An analysis

of this nature helps in finding the feasibility of the wireless option in the cellular constrained

areas.
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Figure 4.12: Effect of link utilization
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Figure 4.13: Effect of link unreliability

4.6.5 Effect of Operational Period

Fig. 4.11 shows the effect of operational period on the total costs (initial installation costs

and operational costs over the operational period). In case of fixed operational costs, total

costs increase rapidly with increasing operational period. In case of adaptive costs depending

upon link utilization the total costs reduce dramatically. Also in this case, if the available

link bandwidth is much higher as compared to bandwidth utilization, then operational costs

turn out be very less and over time the initial investment on installation is recovered. Thus

it can be profitable to deploy a cellular transceiver on a bigger subset of towers. However,

if cellular bandwidth is relatively less, making the link utilization based operational costs a

bigger part of the total costs, then the number of cellular towers needs to be optimized. This

graph illustrates how different factors such as available link bandwidth, operational period and
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cost ratios affect minimum cost network design.

4.6.6 Effect of Link Utilization based Cost

Fig. 4.12 shows the impact of link utilization based adaptive cost models on total network

design cost. In this simulation, we consider a 75 node network with a operational period of

100. We consider 4 cost models explained as follows.

The Fixed Cost model considers fixed subscription cost ignoring adaptive link utilization.

As evident, it incurs highest costs because the number of deployments increase with increasing

flow bandwidth requirement.

The Adaptive Cost, Link BW(75Mbps) model is the link utilization based cost model where

cellular bandwidth is 75Mbps incurring the lowest costs. The optimal solution here is to deploy

all towers with cellular capability. This solution is optimal due to two factors. One, the

subscription costs become negligible as compared to wireless operation costs given the high

cellular bandwidth availability as compared to utilization. Secondly, a huge initial investment

can be easily recovered given a large operational period. The negligible subscription cost acts

as an incentive to initially deploy all towers with cellular capability.

In order to consider the effect of available cellular bandwidth, we consider an Adaptive

Cost, Link BW(0.5Mbps) model with a smaller available link bandwidth of 0.5Mbps. In this

case link utilization based subscription costs are non negligible resulting in increased cost.

We consider another cost model, Adaptive Cost, Base Subs where in addition to the link

utilization based adaptive costs, a fixed base subscription fee is charged per active cellular link

per period. The available cellular bandwidth is 75Mbps. Thus subscription costs are negligible

but base subscription fee acts as a major factor in cost calculations. When compared with

Adaptive Cost, Link BW(0.5Mbps), the tradeoff can be observed. At lower flow bandwidth

requirements, Adaptive Cost, Base Subs incurs more cost due to overpowering base subscription

fee. But at higher requirement, link utilization based costs result in more costs by Adaptive

Cost, Link BW(0.5Mbps).
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4.6.7 Effect of Link Unreliability

Fig. 4.13 shows the impact of link unreliability on network design cost. In this simulation,

we consider a constant flow bandwidth of 32kbps and a deadline constraint of 3 sec. At lower

link reliabilities, a path should consist of lesser number of links to maintain path reliability

constraint. This leads to more cellular towers being deployed resulting in higher costs. As

link reliability increases, more wireless links can be utilized resulting in cost reduction. After

a certain point (maximum links ≥ 6), any further increase in link reliability does not affect

cost reduction. This is because other optimization constraints such as limited bandwidth and

latency limit the number of flows per link and hence the number of links per path.
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4.6.8 Effect of Incremental Deployment

We perform experiments on a network of 50 towers with each tower generating sensor data

at the rate of 32 kbps initially. The data generation rates are then gradually increased upto 128

kbps to mirror the increasing bandwidth demands in the future. Fig. 4.14 shows the cumulative

costs incurred by the two methods: incremental deployment and memoryless deployment when

the operational period is equal to one. Memoryless deployment starts with a clean slate each

time a new requirement comes in. Due to this, memoryless deployment ends up installing a
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cellular transceiver on a much bigger subset of towers. Incremental deployment modifies the

input to the optimization and adds new links on top of existing network such that the existing

design is utilized as much as possible incurring lesser deployment costs.

Please note that both deployment methods are variations of our proposed formulation

producing optimal solutions depending on the input being provided to them. Our formulation

offers the flexibility to perform different types of analyses. Factors such as operational period

and link utilization based costs affect the performance of the two methods. Consider Fig. 4.15,

where operational period is varied from 20 to 350. We consider a cost model (C1(1:10:2)) with

the variation that each active cellular link is charged a base subscription fee and link utilization

based subscription cost instead of fixed subscription cost. Each point on the graph, represents

the total costs of an instance where a set of data requirements (starting from 32kbps to 128kbps)

was operational for a period τ . Each value on the curve is the total cost of memoryless

deployment normalized with respect to the respective value for incremental deployment to

show their relatively close but different performance.

In Fig. 4.15, we observed that at low operational periods, memoryless deployment incurs

more cost than incremental deployment. This is because memoryless deployment ignores any

investment made in the earlier deployment and small operational period do not allow enough

time to recover from that investment. Incremental deployment on the other hand, avoids

extra installations by making the most use of the already deployed towers. At higher opera-

tional periods, the installation costs can be recovered and hence memoryless and incremental

deployments produce solutions with equal costs.

4.6.9 Modeling multiple constraints

In the proposed formulation, we presented a generalised formulation in order to encompass

varied application scenarios. However, it can be difficult to model every operational constraint.

Mainly, the most important constraints that need to be modeled for a feasible network design

are flow latency and flow bandwidth constraints. This is because Zigbee links can provide the

least expensive communication, but their limited bandwidth proves to be a major bottleneck.
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Also the topology of transmission lines presents critical challenges towards low latency com-

munication being achieved solely by Zigbee links. These are followed by the cellular coverage

constraint since extreme unavailability of cellular coverage might render the network design

infeasible. Other constraints such as link reliability, link utilization based cost structure, asym-

metric data generation etc. are less critical for a feasible cost optimized network design. The

results we present in the chapter individually analyse the effect of variation in each of the

constraint on the cost of the network while other constraint are assumed to take up average

values. Specifically, we find that network design is feasible at very low costs at higher latency;

at very high costs at higher flow bandwidth. Further, we find that if link utilization based cost

structure is adopted then flow bandwidth requirement might have no effect on the total costs

as shown in Fig. 4.12.

4.7 Conclusions

In this chapter, we presented a formulation for a cost optimized wireless network capable of

transmission of time sensitive sensor data through the transmission line network in the presence

of delay and bandwidth constraints. We formulated a placement problem to find the optimal

locations of cellular enabled transmission towers. Our analysis shows that a transmission line

monitoring framework using WSN is indeed feasible using available technologies. We compared

behaviour of our proposed method with the method proposed in [3]. Our proposed formulation

is generic and encompasses variation in several factors such as asymmetric data generation at

towers, wireless link reliabilities, link utilization dependent costs, non-uniform cellular coverage

characteristics and requirements for cost optimized incremental deployment. Our evaluation

studies show that the main bottleneck in cost minimization is wireless link bandwidth. Further,

in cases of increasing flow bandwidth, the limited wireless link bandwidth leads to a feasible

but expensive design due to increased dependence on cellular network to satisfy constraints.
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CHAPTER 5 Conclusions and Future Work

This dissertation addressed the problem of resource management in real-time Wireless

Sensor Networks (WSN) for applications in Cyber Physical Systems. The goal was to design

efficient offline and run-time energy-aware scheduling algorithms to effectively perform resource

management in the presence of several constraints. Additionally, a network design solution for

real-time monitoring of overhead electrical transmission power lines was proposed. Specifically,

the following contributions were made:

(1) Offline energy-optimized schedule construction

1. The problem of joint scheduling of tasks and messages in a data collection tree

network in the presence of precedence, deadline and interference constraints was

mathematically formulated.

2. An efficient algorithm to generate a feasible, energy-aware schedule leveraging the

energy delay tradeoff was developed [31].

3. The performance of the proposed algorithm was found comparable to that of the

optimal solution obtained using a Mixed Integer Linear Program.

(2) Online scheduling for energy-aware adaptive Medium Access Control (MAC) protocols

1. Online adaptive algorithms were developed to exploit runtime variations for two

categories of MAC schemes: Time Division Multiple Access (TDMA) and Carrier

Sense Multiple Access/Collision Avoidance (CSMA/CA).

2. For TDMA systems, lightweight node level slack management scheme was developed

to exploit slack generated due to temporal correlation at runtime [77].
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3. Simulation results show that significant reduction in energy consumption was achieved

with the proposed schemes.

4. For CSMA/CA systems, a heuristic that adapts to varying load and channel state

to obtain combined reduction in energy consumption and transmission delay was

developed [78].

5. Simulation results show that our proposed load aware and channel aware algorithm

significantly reduces energy wastage due to failed transmissions and results in higher

transmission success rate.

(3) Wireless Network Design for Transmission Line Monitoring in Smart Grid

1. Application specific requirements were characterized and a hybrid network design

problem was formulated for real-time monitoring considering the latency and band-

width constraints of WSNs.

2. A placement problem was formulated using an Integer Linear Program to find the

optimal location of cellular enabled transmission towers.

3. A generic formulation was devised that addresses real world scenarios with asym-

metric sensor data generation, unreliable wireless link behavior, non-uniform cellular

coverage etc [79].

4. Proposed formulation provides a method to address requirements for incremental

deployment in the future in a cost minimized manner.

5. The proposed design of a high performance data communication network can prove

immensely beneficial to electrical utility companies planning to either manage an

existing transmission infrastructure, or deploying a robust new one.

Future Work

Our research can be expanded to address several exciting problems in the area of resource

management in WSN and their integration in future applications. We propose some ideas for

short term and long term future work as follows:
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(1) Short term research directions

1. Refined cost models for network design and planning: The cost optimized network

design proposed for transmission line monitoring can be extended to address the

changing value of money over time. Specifically, we recognize that the proposed

network design needs to remain relevant and cost optimized for long operational

periods typically fifteen to twenty years in the future. A more elaborate cost model

can be created by considering factors such as monetary inflation that result in

increased price levels of goods (sensors, cellular transceivers) and services(sensor

maintenance, cellular subscription) etc.

2. Distributed algorithms: Joint scheduling of tasks and messages can be performed

through distributed algorithms to further reduce the energy overhead stemming

from centralized operation. Designing distributed algorithms for a WSN with het-

erogeneous nodes and channel conditions presents several research challenges such

as lack of global knowledge about the workload and channel condition, etc.

3. Runtime Variations: The effect of combining other runtime variations like dynamic

execution time of computation tasks, channel variations, and exploiting both spa-

tial and temporal correlation can be studied. The study of associated tradeoffs to

characterize the net benefit and designing low complexity algorithms to leverage

these factors forms an interesting research problem.

(2) Long term research directions

1. Network Coding: Given the expansive scale at which the WSNs of the future will be

deployed and the associated increase in bandwidth requirements, the existing MAC

and routing technologies will fall short in transporting the enormous amount of data

in a reliable manner. Network coding brings the promise of providing significant

throughput improvements in wireless networks by reducing the number of transmis-

sions which has twofold benefits of energy reductions and throughput maximization.

Network coding aided scheduling can prove to be highly energy efficient for both
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broadcast and multicast scenarios. The investigation of tradeoffs between network

coding based throughput maximization and energy minimization form an exciting

research problem.

2. Fault diagnosis: Applications utilizing sensor networks to procure monitoring data

must deal with unpredictability and unreliability in the data due to uncertainties

in wireless channel and in sensor measurements. This calls for diagnosis of the fault

scenarios to classify them as faults in the physical structure or in the monitoring

framework for appropriate control actions to take place. A fault diagnosis framework

addressing such uncertainties in sensor measurements to provide reliable structure

monitoring forms an interesting future research area.
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